
The emergence of the COVID-19 pandemic has underscored the critical importance of accurate and reliable methods for
the early detection and management of cases. Traditional approaches to COVID-19 diagnosis often rely on binary
classification methods, which may limit their accuracy and robustness. In this study, we propose a novel approach that
leverages chest radiography images for predicting COVID-19 cases. By reframing the classification task as a regression
problem, we aim to enhance the accuracy and reliability of our predictive model. 
Our method involves several key steps. Firstly, we collected a dataset of chest radiography images from confirmed
COVID-19 cases and non-COVID-19 cases. Next, we preprocessed the images and extracted relevant features using
advanced image processing techniques. We then framed the prediction task as a regression problem, allowing us to
model the continuous variation in disease severity rather than relying on binary classification. The predictive model was
trained using machine learning algorithms, and both internal and external validation were performed to assess its
performance. 
Our method involves converting the classification task into a regression task, which enables improved accuracy and
robustness in the model. We performed both internal and external validation, with R  train = 0.91, CV-MSE = 0.0253, and
Q  = 0.91, indicating high accuracy and reliability in predicting COVID-19 cases. Additionally, we conducted an
applicability domain analysis, which showed that 99% of unseen data can be accurately predicted by our model. 
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Our findings suggest that our method can be a valuable tool in the early detection and management of COVID-19 cases,
which can ultimately improve patient outcomes and public health. Further validation and testing in real-world clinical
settings are needed to confirm the effectiveness and generalizability of our approach.
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INTRODUCTION 

The COVID-19 pandemic has impacted countless individuals
worldwide and remains a significant public health concern.
A crucial aspect of controlling the spread of the disease is
identifying infected individuals quickly and accurately. Chest
radiography has become a useful tool in detecting COVID-19
because it can reveal unique features of the disease (1).
There are various experimental methods for COVID
detection, including PCR, antigen tests, and antibody tests.
Although these methods have been useful in detecting and
diagnosing COVID-19, they have limitations and challenges.
PCR tests are widely used to detect the virus, but they
require specialized equipment and trained personnel and
can have issues with accuracy (2). Antigen tests are faster
and less expensive but may not detect all cases of the
disease (3). Antibody tests are helpful in determining past
infections but not suitable for diagnosing current ones (4). In
silico methods, which involve computer simulations and
modeling, have the potential to overcome some of these
limitations. For example, they can identify potential drug
targets for COVID-19 and predict the effectiveness of the
existing drugs. In silico methods can also be used for
COVID-19 diagnosis, such as using machine learning
algorithms to analyze chest X-rays for the signs of the
disease. These approaches are faster and less expensive
than traditional PCR tests and could be used for mass
screening. While traditional experimental methods are
valuable in fighting COVID-19, in silico methods can
complement or even replace some of these methods. They
offer benefits in terms of speed, cost, and accuracy, and
could improve diagnosis and screening and lead to the
development of new treatments (5).
Numerous studies have reported high accuracy rates in
detecting COVID-19 using in silico-based approaches. For
instance, Narayan Das and colleagues developed an
automated deep transfer learning-based approach that
used the Xception model to detect COVID-19 infection in
chest X-rays, achieving a sensitivity of 0.974% and
specificity of 0.972% (6). Similarly, Wang and team trained
the convolutional neural network (CNN) on a dataset of
13,975 chest radiographs, obtaining a sensitivity of 98.9%
for COVID-19 detection (7). Another study by Nasiri et al.
employed the deep neural network (DNN) DenseNet169 to
extract features from X-ray images of patients' chests, which
were then fed to the XGBoost algorithm for classification,
yielding 98.23% and 89.70% accuracy (5).

Moreover, Hemdan et al. employed the COVIDX-Net
network to classify chest radiographs as either COVID-19
positive or negative, achieving an accuracy of 91% (8). Hou
et al. developed a diagnosis platform using a DCNN that
could assist radiologists in distinguishing COVID-19
pneumonia from non-COVID-19 pneumonia with above 96%
accuracy (9). Gao et al. created a deep CNN-based chest X-
ray classifier that could detect abnormalities and extract
textural features of the altered lung parenchyma related to
specific COVID-19 signatures, with an accuracy of 91% (10).
Furthermore, Alqahtani et al. proposed a COV-Net model to
learn COVID-specific patterns from chest X-rays, which
attained high accuracy (99.23%) in multi-class and binary
classification of COVID-19 and pneumonia (11). Carlile and
colleagues deployed a previously validated deep-learning
AI algorithm for assisted interpretation of chest radiographs,
which was easy to use and influenced clinical decision-
making for 20% of the respondents (12).
Farooq and Hafeez presented a multi-stage fine-tuning
scheme for pre-trained ResNet-50 architecture named
COVIDResNet, achieving an accuracy of 96.23% (13).
Similarly, Abbas et al. developed the DeTrac CNN model to
distinguish COVID-19 symptoms using chest X-rays, reaching
95.12% accuracy and 97.91% sensitivity (14).
Convolutional neural networks (CNNs) have shown potential
in identifying COVID-19 in chest radiography images by
recognizing unique disease features through convolutional
and pooling layers (15). In this study, we applied CNN to
extract features from COVID-19 X-ray images, which were
then fed to a feedforward neural network for binary
regression. A value of one indicated a positive COVID-19
case, and a value of zero denoted a healthy X-ray chest
radiography. We trained and tested the model on a COVID-
19 X-ray image dataset, obtaining high accuracy in detecting
COVID-19 cases. This approach offers the benefits of
leveraging the powerful feature extraction capabilities of
CNNs while using the flexibility and interpretability of
feedforward neural networks, showing promise in improving
the accuracy and speed of COVID-19 diagnosis from chest
radiography images. The main objective of this research is
to investigate the feasibility of framing COVID-19 detection
as a regression problem by combining CNN-based feature
extraction with a feedforward neural network, thereby
enabling a more flexible and interpretable diagnostic output
than traditional classification approaches.
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METHODS
 
Our approach comprised several crucial steps, which are
depicted in Figure 1. To begin with, we procured a dataset
of chest x-ray images from a Kaggle database (16).
Subsequently, we fine-tuned a pre-existing AlexNet model
to extract pertinent features from the images in the dataset.
We then utilized these extracted features as inputs to a
feedforward network, which we trained to predict the
probability of a patient having COVID-19. For this purpose,
we set the output of the feedforward network to 0 for
negative COVID-19 images and 1 for positive COVID-19
images. Finally, we evaluated the accuracy and
effectiveness of our model by analyzing its results.
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Figure 1. Flowchart of the method used in the study

Collection of chest X-ray dataset
 
In this scientific research, we collected a dataset of 1,000
chest radiography images related to COVID-19. The dataset
was obtained from the Kaggle database (16) and contained
500 images of positive COVID-19 cases and 500 images of
negative COVID-19 cases. The images were reviewed by a
team of experienced radiologists to ensure their accuracy
and authenticity. Our dataset of COVID-19 chest radiography
images provides a valuable resource for researchers in the
development of artificial intelligence-based tools for the
early detection of COVID-19. The availability of such
datasets is essential for training robust models and enabling
their reliable deployment in clinical settings.

Feature extraction
 
In this research paper, we used transfer learning to extract
features from COVID-19 chest radiography images.
Specifically, we utilize the AlexNet deep learning
architecture, pre-trained on the ImageNet dataset, to
extract relevant features from our COVID-19 chest
radiography dataset. Transfer learning is a powerful
technique that allows us to leverage the knowledge learned
from a source domain (e.g., ImageNet) to improve
performance in a target domain (e.g., COVID-19 chest
radiography) (17). In our experiments, we fine-tuned the last
six layers of AlexNet with new ones designed for our target
task. Table 1 summarizes the list of the new layers. We also
set the dimension of the extracted features to be ten, which
was chosen based on a trade-off between model
complexity and performance. 

Training a Feed Forward Network
 
To predict the likelihood of COVID-19 infection, we utilized a
feed-forward neural network that took the extracted features
as input. To enable a continuous output, we transformed the
classification task into a regression task by setting a value of
one for a positive COVID-19 chest radiography and zero for a
negative COVID-19 chest radiography in the output layer of the
network. This approach provided a more nuanced
understanding of the relationship between input and output
variables. Changing a classification problem to a regression
problem in a neural network has several benefits, including
continuous output that is useful when the target variable has a
natural ordering or is a continuous variable. Moreover,
regression models can be more effective in some cases than
classification models as they are more sensitive to the
magnitude of the errors and can be more robust to imbalanced
or noisy data. By converting a classification problem to a
regression problem, we were able to use a wide range of
regression techniques and architectures, which provided
greater flexibility and customization of the model. In addition,
regression problems allow the use of a wider range of loss
functions such as mean squared error or mean absolute error,
which can be more effective for some types of problems than
the cross-entropy loss function typically used in classification
problems. Finally, regression models are often more effective
at generalizing to new data than classification models, as they
can capture the underlying structure of the data rather than
simply classifying it into discrete categories (18).  We designed 
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Table 1. The twenty layers of our ALEXNET transfer learning architecture

a Feedforward Neural Network (FFNN) with multiple hidden
layers and trained it using the backpropagation algorithm
with gradient descent and momentum optimization. The
network was trained on a dataset of 1,000 chest
radiography images, of which 70% were randomly selected
for training. To assess model performance during training,
we used 5-fold cross-validation, a form of internal validation
where the training data is split into five parts: four used for
training and one for validation, iteratively. In addition to this,
we reserved 15% of the entire dataset as an external
validation set, a separate subset not used during training or
cross-validation, to evaluate the model's generalization
ability on unseen data. The remaining 15% was allocated for
assessing the model’s applicability domain, helping to
define the boundaries within which the model's predictions
can be considered reliable. 
Choosing a size of 10 for the fully connected layer of the
CNN can have several benefits (19):
 1. It can help reduce overfitting: By reducing the number of
parameters, we are simplifying the model and making it less
prone to overfitting on the training data.
 2. It can make training faster: With fewer parameters, the
model will require less computation during training, which
can speed up the training process.

3. It can improve generalization: By compressing the feature
representation, we may be removing some noise and
irrelevant information from the input, which can improve the
model's ability to generalize to new, unseen data.
Determining the optimal number of hidden neurons in a
modeling task is a challenging task with no clear answer. To
address this issue, we followed the approach outlined by
Khaouane et al. in their study to determine the appropriate
number of neurons in the hidden layer. This approach has
been detailed in various reviews and is widely used in the
literature (20).
The mathematical equation of the model for the prediction
of COVID-19 cases is shown below.

Model validation

Validation of models is a critical step in ensuring their
reliability and accuracy in predicting new COVID-19 cases.
The performance of the model on an independent set is
evaluated using the best model, based on its performance
on the cross-validation folds. The external set must be
independent of the dataset used for training and cross-
validation, ensuring that the evaluation is unbiased and
represents the model's true performance on new data. 
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x i (I = 1…p) represents the input corresponding to the number of data included in the training of the FFNN, where i ranges from 1 to 10,
wij (i = 1…p, j = 1…k) are the weights connecting the input to hidden layer, b j (j= 1…k) are the biases of the neurons in the hidden layer,
w2j (j = 1…k) are the weights connecting the hidden layer to the output layer, b is the bias of the output neuron, and f is the output.

Analogous to QSAR models, our model uses both internal
and external parameters to assess performance. Internal
parameters such as correlation coefficient (R), determination
coefficient (Q2), and mean square error (MSE) measure the
accuracy of the model's predictions on the data used for
model building. External parameters such as Tropsha
parameters assess the model's ability to predict the COVID-
19 cases of new chest x-ray images not included in the
original dataset. Therefore, combining internal and external
parameters is essential to validate models and ensure their
reliability in predicting COVID detection from new chest
radiography images (21).

The mathematical equation of the model for the prediction
of COVID-19 cases is shown below:

               are the squared correlation coefficients between
the observed and predicted values with and without
intercept, respectively. The parameter       has the same
meaning but uses the reversed axes.

Table 2. Selected criteria of the obtained different feed-forward
neural networks
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RESULTS

The suitability of the 10 structural features generated with
CNN for the modeling task was determined based on their
correlation coefficient R. The results indicated an
acceptable level of multicol-linearity, with an absolute value
of R below 0.75 (20). A heatmap (Figure 2) was created to
provide a more comprehensive view of the correlation
structure among the features. To specify the number of
hidden neurons required, the procedure detailed above was
followed. Using multiple evaluation criteria can help ensure
that the chosen model is accurate. R train, Q , and CV-MSE
criteria were employed for the evaluation of the accuracy of 
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the best model. Table 2 shows 09 network models
developed and evaluated using R  train, Q , and CV- MSE
criteria. The best model was chosen based on the maximum
R  train = 0.91, Q  = 0.91, and the minimum CV-MSE =
0.025. The best performance of the model had a topology
of 10-[1]-1, with 10 input nodes, one hidden layer with 01
node using the hyperbolic tangent as a transfer function,
and one output layer with an identity transfer function. The
neural networks were implemented using a MATLAB
program developed by the team. Figure 3 depicts the
comparison between the true and predicted COVID x-ray
chest radiography images indicating the presence of
infection or not for both the training and testing sets of the
best fold. The results demonstrate a significant level of
correlation between the predicted and original infection or
not COVID x-ray chest radiography images, affirming the
model's accuracy in detecting the presence of COVID.
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Figure 2. Heatmap of the 10 structural features generated with CNN
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Figure 3. Comparison between the true and predicted COVID x-ray chest radiography images indicating the presence of infection or
not for training, validation, and external testing sets using the best fold.
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Table 3. External and internal validation criteria
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Validation of the model
 
The statistical evaluation presented in Table 3 shows that
the developed FFNN model has high performance and
quality of predictions. The internal validation statistical
coefficients, such as R2 train, Q2cv, and CV- MSE are all
acceptable and satisfactory, indicating that this model is
robust. The model was also evaluated in terms of external
validation criteria, and the value of Q2 was found to be
greater than 0.6, which is considered excellent. Therefore,
the model has excellent predictive power. Furthermore, the
difference between R  train and Q  was found to be equal to
0.03, which did not exceed 0.3. This indicates that the
model is robust and not overfitting the training data (20).

2 2

Figure 4. Plot of residuals for the true and predicted COVID x-ray
chest radiography images indicating the presence of infection or
not in the training set and applicability domain set

Applicability domain

When utilizing machine learning models for prediction tasks,
it is critical to consider the concept of applicability domain,
which determines the range of inputs for which a model can
generate accurate predictions. Applying a model beyond its
applicability domain may result in unreliable or meaningless
predictions. There are various methods for determining the
applicability domain of a machine learning model, such as
distance-based, leverage-based, and model-based
techniques (22).
In this study, we employed a leverage approach, analogous
to QSAR models, to analyze the applicability domain. The
Williams plot (Figure 4) revealed that one of the test
samples was outside the applicability domain, indicating
that the model can predict approximately 99% of new,
untested chest radiography images related to COVID-19.
Our method complies with the third principle of the OECD
used in QSAR models, ensuring the robustness and
reliability of our findings (23).

Comparison with literature
 
We have developed a method that aims to enhance the
precision and efficiency of COVID-19 diagnosis through
chest radiography images. In order to evaluate the
effectiveness of our approach, we conducted a comparative
analysis with various other methods that have been
previously reported in the literature. The findings of our
analysis are presented in Table 4, which provides a
comprehensive overview of the comparison between our
method and the ones reported in the literature. Table 4
illustrates that our method has achieved a commendable
accuracy of 91% on the training data, indicating its
effectiveness in detecting COVID-19 cases. It is important to
note, however, that making direct comparisons between
different methods can be challenging due to variations in
dataset and data size. 
Additionally, our method stands out as it has been validated
on three external sets, including a validation set, an external
test set, and an applicability domain set, which other
methods did not perform. This proves that our model can
perform well on a wide range of external datasets,
enhancing the reliability of our results. Our novel approach
of converting the classification task into a regression task
has enabled us to achieve better accuracy and robustness
in our model. 
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Furthermore, our approach has been thoroughly validated
both internally and externally, providing empirical evidence
of its effectiveness in detecting COVID-19 cases in chest
radiographs. Based on our findings, we strongly believe that
our approach has the potential to significantly improve the
accuracy and reliability of COVID-19 diagnosis through chest
radiography.

In terms of practical applications, the strong internal and
external validation results suggest that our model could be
integrated into clinical decision-support systems to assist
radiologists in rapidly screening suspected COVID-19 cases.
In settings with limited access to PCR testing or specialized
personnel, the model may provide an efficient, lowcost
triage tool. Additionally, the regression-based prediction
output could offer clinicians an interpretable, continuous
score reflecting the likelihood of infection, which may aid in
prioritizing patients for further testing or treatment.
In conclusion, our study presents a novel approach for
COVID-19 case prediction using chest radiography images.
By converting the classification task into a regression task,
our method achieved improved accuracy and robustness in
the model. Our internal and external validation results
demonstrated high accuracy and reliability, with R  train =
0.91, CV-MSE = 0.0253, and Q  = 0.91. 
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Table 4. Comparison of our method with others from literature
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DISCUSSION
 
In this study, we presented a deep learning approach for
COVID-19 chest radiography detection, using the AlexNet
deep learning model for feature extraction and a
feedforward network for prediction. Our method involves
converting the classification task into a regression task,
which enables improved accuracy and robustness in the
model. We performed both internal and external validation,
with R  train = 0.91, CV-MSE = 0.0253, and Q  = 0.91,
indicating high accuracy and reliability in predicting COVID-
19 cases from chest radiography images. Additionally, we
conducted an applicability domain analysis, which showed
that 99% of unseen data can be accurately predicted by our
model. Overall, our study provides promising evidence for
the potential of deep learning models in COVID-19 diagnosis
through chest radiography, with high accuracy, robustness,
and applicability to new data. The use of deep learning
models for COVID-19 detection has the potential to
significantly improve the speed and accuracy of diagnosis,
especially in resource-limited settings where access to
medical experts may be limited.

2 2
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However, it is important to note that our study has some
limitations, including the relatively small size of the dataset
used in this study. Future studies could benefit from larger
datasets to improve the generalizability of our findings.
Overall, our study provides promising evidence for the use
of deep learning models in COVID-19 diagnosis through
chest radiography, and highlights the potential of machine
learning in advancing medical diagnosis and treatment.

Furthermore, the applicability domain analysis indicated that
our model can accurately predict 99% of unseen data. Our
findings suggest that our method can be a valuable tool in
the early detection and management of COVID-19 cases,
which can ultimately improve patient outcomes and public
health. Future studies can build on our findings and further
validate the effectiveness and generalizability of our
method in real-world clinical settings.

Acknowledgement
 
The authors would like to express their gratitude for the
support and contributions that made this work possible.
 
Competing Interest
 
The authors declare no relevant conflicts of interest.

Publisher’s Note: The statements, opinions, and data contained

in AFMN Biomedicine articles are solely those of the individual

author(s) and contributor(s) and do not necessarily represent the

views of the publisher or the editor(s). The publisher and editor(s)

disclaim responsibility for any harm or damage caused by the use

of information or products mentioned in the publication.

http://https/doi.org/10.5937/afmnai42-50739


A. Khaouane et al.

AFMN Biomedicine 2025; 42(3):367-376 afmn-biomedicine.comhttps/doi.org/10.5937/afmnai42-50739

REFERENCES

1. Rawat RM, Garg S, Jain N, Gupta G. Covid-19 detection
using convolutional neural network architectures based
upon chest X-rays images [abstract].2021. 1070-4P.
https://doi.org/10.1109/ICICCS51141.2021.9432134

2. Anantharaj A, Das SJ, Sharanabasava P, et al. Visual
detection of SARS-CoV-2 RNA by conventional PCR-induced
generation of DNAzyme sensor. Front Mol Biosci
2020;7:586254.
https://doi.org/10.3389/fmolb.2020.586254

3. Scohy A, Anantharajah A, Bodéus M, et al. Low
performance of rapid antigen detection test as frontline
testing for COVID-19 diagnosis. J Clin Virol
2020;129:104455.
https://doi.org/10.1016/j.jcv.2020.104455

4. Kopel J, Goyal H, Perisetti A. Antibody tests for COVID-19
[abstract].34;2021. 63-72P.
https://doi.org/10.1080/08998280.2020.1829261

5. Nasiri H, Hasani S. Automated detection of COVID-19
cases from chest X-ray images using deep neural network
and XGBoost. Radiography 2022;28:732-8.
https://doi.org/10.1016/j.radi.2022.03.011

6. Das NN, Kumar N, Kaur M, et al. Automated deep transfer
learning-based approach for detection of COVID-19 infection
in chest X-rays. Irbm 2022;43:114-9.
https://doi.org/10.1016/j.irbm.2020.07.001

7. Wang L, Lin ZQ, Wong A. Covid-net: A tailored deep
convolutional neural network design for detection of covid-
19 cases from chest x-ray images. Sci rep 2020;10:1-12.
https://doi.org/10.1038/s41598-020-76550-z

8. Hemdan EE-D, Shouman MA, Karar ME. Covidx-net: A
framework of deep learning classifiers to diagnose covid-19
in x-ray images. arXiv preprint arXiv:200311055 2020.

9. Hou J, Gao T. Explainable DCNN based chest X-ray image
analysis and classification for COVID-19 pneumonia
detection. Sci Rep 2021;11:1-15.
https://doi.org/10.1038/s41598-021-95680-6

375

10. Gao T, Wang G. Chest X-ray image analysis and
classification for COVID-19 pneumonia detection using Deep
CNN. medRxiv 2020:2020.08. 20.20178913.
https://doi.org/10.21203/rs.3.rs-64537/v1

11. Alqahtani A, Zahoor MM, Nasrullah R, et al. Computer
Aided COVID-19 Diagnosis in Pandemic Era Using CNN in
Chest X-ray Images. Life 2022;12:1709.
https://doi.org/10.3390/life12111709

12. Carlile M, Hurt B, Hsiao A, et al. Deployment of artificial
intelligence for radiographic diagnosis of COVID‐19
pneumonia in the emergency department.JACEP Open
2020;1:1459-64.
https://doi.org/10.1002/emp2.12297

13. Farooq M, Hafeez A. Covid-resnet: A deep learning
framework for screening of covid19 from radiographs. arXiv
preprint arXiv:200314395 2020. 

14. Abbas A, Abdelsamea MM, Gaber MM. Classification of
COVID-19 in chest X-ray images using DeTraC deep
convolutional neural network. Appl Intell 2021;51:854-64.
https://doi.org/10.1007/s10489-020-01829-7

15. Mukherjee H, Ghosh S, Dhar A, et al. Shallow
convolutional neural network for COVID-19 outbreak
screening using chest X-rays. Cogn Comput 2021:1-14.
https://doi.org/10.36227/techrxiv.12156522.v1

16. Alif Rahman (2020). COVID-19 Chest X-ray Image
Dataset. Retrieved January 20, 2023 from
https://www.kaggle.com/datasets/alifrahman/covid19-chest-
xray-image-dataset 

17. Abd Almisreb A, Jamil N, Din NM. Utilizing AlexNet deep
transfer learning for ear recognition [abstract].2018. 1-5P.
https://doi.org/10.1109/INFRKM.2018.8464769

18. Rocha M, Cortez P, Neves J. Evolution of neural
networks for classification and regression. Neurocomputing
2007;70:2809-16.
https://doi.org/10.1016/j.neucom.2006.05.023

19. Bebis G, Georgiopoulos M. Feed-forward neural
networks. Ieee Potentials 1994;13:27-31.
https://doi.org/10.1109/45.329294

http://https/doi.org/10.5937/afmnai42-50739
https://doi.org/10.1109/ICICCS51141.2021.9432134
https://doi.org/10.3389/fmolb.2020.586254
https://doi.org/10.1016/j.jcv.2020.104455
https://doi.org/10.1080/08998280.2020.1829261
https://doi.org/10.1016/j.radi.2022.03.011
https://doi.org/10.1016/j.irbm.2020.07.001
https://doi.org/10.1038/s41598-020-76550-z
https://arxiv.org/abs/2003.11055
https://doi.org/10.1038/s41598-021-95680-6
https://doi.org/10.21203/rs.3.rs-64537/v1
https://doi.org/10.3390/life12111709
https://doi.org/10.1002/emp2.12297
https://arxiv.org/abs/2003.14395
https://doi.org/10.1007/s10489-020-01829-7
https://doi.org/10.36227/techrxiv.12156522.v1
https://www.kaggle.com/datasets/alifrahman/covid19-chest-xray-image-dataset
https://www.kaggle.com/datasets/alifrahman/covid19-chest-xray-image-dataset
https://doi.org/10.1109/INFRKM.2018.8464769
https://doi.org/10.1016/j.neucom.2006.05.023
https://doi.org/10.1109/45.329294


A. Khaouane et al.

AFMN Biomedicine 2025; 42(3):367-376 afmn-biomedicine.comhttps/doi.org/10.5937/afmnai42-50739

22. Roy K, Kar S, Ambure P. On a simple approach for
determining applicability domain of QSAR models.
Chemometr Intell Lab Syst 2015;145:22-9.
https://doi.org/10.1016/j.chemolab.2015.04.013

23. OECD. Guidance Document on the Validation of
(Quantitative) Structure-Activity Relationship [(Q)SAR]
Models.(2014).

376

20. Khaouane A, Ferhat S, Hanini S. A Novel Methodology
for Human Plasma Protein Binding: Prediction, Validation,
and Applicability Domain. Pharm Biomed Res 2022;8:311-22.
https://doi.org/10.32598/PBR.8.4.1086.1

21. Alexander DL, Tropsha A, Winkler DA. Beware of R 2:
simple, unambiguous assessment of the prediction accuracy of
QSAR and QSPR models. J Chem Inf Model 2015;55:1316-22.
https://doi.org/10.1021/acs.jcim.5b00206

http://https/doi.org/10.5937/afmnai42-50739
https://doi.org/10.1016/j.chemolab.2015.04.013
https://doi.org/10.32598/PBR.8.4.1086.1
https://doi.org/10.1021/acs.jcim.5b00206

