
Artificial intelligence (AI) is reshaping personalized medicine by enabling earlier diagnosis, tailored therapies, and faster
drug discovery. The aim of the paper was to synthesize current evidence on AI applications in precision healthcare and
quantify their impact on diagnostics, therapeutic decision-making, and discovery.
We conducted a systematic review (2015–2024) with descriptive quantitative analysis across PubMed, Scopus, IEEE
Xplore, and Web of Science. Fifty peer-reviewed studies met inclusion criteria (reporting sensitivity/specificity/accuracy or
real-world deployment). We additionally summarized three case studies (oncologic imaging, rheumatoid arthritis
treatment selection, and AI-accelerated discovery for glioblastoma).
In oncology imaging, AI achieved high performance; the best lung-nodule model reported sensitivity at 95% and
specificity at 94%. In chronic-disease therapeutics, AI tools predicted responses to DMARDs with ~87% accuracy, reduced
adverse drug reactions by ~30%, and cut time-to-decision by ~85%. For discovery pipelines, AI screens compressed
candidate identification by ~85%, yielding viable molecules within weeks. In diabetes management, AI-enabled
predictive analytics achieved ~95% prediction accuracy, reduced hyperglycemic episodes by ~40%, and improved
patient satisfaction.
Evidence indicates that AI enhances diagnostic accuracy, personalizes therapy, and accelerates discovery while
improving efficiency in chronic-disease management. Real-world adoption will depend on mitigating algorithmic bias,
safeguarding privacy, expanding representative datasets, and deploying transparent, clinically interpretable models
within clear regulatory frameworks.
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INTRODUCTION 

Personalized medicine has emerged as a revolutionary
paradigm in modern healthcare, focusing on tailoring
medical treatments and preventive strategies to the unique
genetic, molecular, and environmental profiles of individual
patients. By moving away from the traditional “one-size-fits-
all” approach, personalized medicine provides targeted
therapies that enhance clinical outcomes while minimizing
the risk of adverse effects (1). This shift is particularly crucial
in managing complex diseases such as cancer,
cardiovascular disorders, and auto-immune conditions,
where heterogeneity in patient populations often limits the
efficacy of standardized treatments (2).
The integration of artificial intelligence (AI) into personalized
medicine represents a transformative advancement,
leveraging computational power to analyze and interpret
large-scale biomedical data with unparalleled accuracy and
speed (3). AI technologies, including machine learning (ML),
deep learning (DL), and natural language processing (NLP),
have enabled the extraction of actionable insights from
genomic data, electronic health records (EHRs), and medical
imaging, which were previously too complex for traditional
statistical methods to process effectively (4, 5).
 
Genomics and precision oncology application
 
AI has fundamentally transformed genomic analysis,
enabling the identification of disease-associated genetic
mutations and facilitating the development of precision
oncology. For example, convolutional neural networks
(CNNs) have been employed to analyze whole-genome
sequencing data, predicting mutations linked to cancer
progression and therapy resistance (6). In breast cancer, AI-
driven platforms like IBM Watson for Oncology pro-vide
oncologists with evidence-based treatment re-
commendations by integrating clinical guidelines and
genomic data (7). Furthermore, AI tools have accelerated
the identification of biomarkers that predict patient
response to immunotherapy, such as checkpoint inhibitors,
offering a more individualized approach to cancer treatment
(8).

Early disease detection and risk prediction application
 
The early detection of diseases is a cornerstone of
personalized medicine, and AI has demonstrated exceptional 

potential in this domain. Deep learning models trained on
retinal imaging data have accurately predicted
cardiovascular risk factors, including hypertension and
myocardial infarction, with diagnostic accuracy comparable
to conventional clinical methods (9). Similarly, AI systems
analyzing MRI scans have achieved remarkable success in
detecting early-stage neurodegenerative conditions, such
as Alzheimer’s disease, years before clinical symptoms
manifest (10). These capabilities not only improve patient
outcomes but also reduce healthcare costs by enabling
timely interventions.
 
Therapeutic optimization application
 
Personalized treatment planning is another domain where
AI has shown transformative potential. By integrating multi-
omics data, including genomics, proteomics, and
metabolomics, AI-driven decision-support systems
recommend optimal therapeutic regimens tailored to
individual patients (11). For example, in rheumatoid arthritis,
AI models analyze patient-specific data to predict responses
to disease-modifying anti-rheumatic drugs (DMARDs),
enabling rheumatologists to select the most effective
therapy while avoiding unnecessary side effects (12).
 
Drug discovery and repurposing application
 
AI has redefined the process of drug discovery, significantly
reducing the time and cost associated with traditional
methods. Generative adversarial networks (GANs) and
recurrent neural networks (RNNs) have been utilized to
predict the chemical properties of potential drug
candidates, leading to the identification of novel
compounds with high therapeutic potential (13). In addition,
AI has facilitated drug repurposing efforts by identifying
existing drugs that can be used to treat rare or emerging
diseases. For instance, AI models identified baricitinib, a
rheumatoid arthritis drug, as a potential treatment for
COVID-19, demonstrating the adaptability of AI in addressing
global health crises (14).

Real-time monitoring and predictive analytics

Wearable health devices equipped with AI-powered
analytics enable continuous monitoring of vital signs and
other health metrics, providing real-time feedback to
patients and clinicians. These devices, integrated with cloud-
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based AI platforms, predict potential health risks and
provide actionable insights to prevent complications. For
example, AI algorithms analyzing data from continuous
glucose monitors (CGMs) have significantly improved
glycemic control in patients with diabetes by predicting
blood sugar fluctuations and recommending lifestyle
adjustments (15).
 
Challenges and ethical considerations
 
While the benefits of AI-driven personalized medicine are
undeniable, several challenges must be addressed to
ensure its widespread adoption. Data privacy and security
are significant concerns, as personalized medicine relies
heavily on sensitive patient information. Ensuring the
anonymization of data and compliance with regulations,
such as the General Data Protection Regulation (GDPR), is
critical (16). Furthermore, the “black-box” nature of many AI
algorithms raises questions about transparency and
accountability in clinical decision-making, necessitating the
development of explainable AI models that clinicians and
patients can trust (17).
Algorithmic bias is another critical issue. AI models trained
on unrepresentative datasets may perpetuate or exacerbate
health disparities, particularly in underrepresented
populations. Addressing these biases requires diverse
training datasets and continuous validation of AI models
across different demographic groups (18). Finally, the
successful integration of AI into clinical practice demands
significant investments in healthcare infra-structure and the
training of medical professionals, ensuring they can
effectively utilize AI tools in patient care (19).
This paper aims to explore the transformative role of
artificial intelligence in personalized medicine, with a focus
on its applications in genomics, early disease detection,
therapeutic optimization, and drug discovery. By examining
recent advancements and addressing the associated
challenges, this study highlights the potential of AI to
revolutionize modern healthcare and improve patient
outcomes.
The primary objective of this study is to comprehensively
examine the role of artificial intelligence (AI) in advancing
personalized medicine, focusing on its transformative
potential in diagnostics, therapeutic optimization, and drug
discovery. This exploration includes identifying the unique
contributions of AI to precision healthcare, analyzing its
current applications, and addressing the challenges that must 

be overcome to facilitate its broader adoption. By bridging
gaps in current knowledge, the study aims to provide
practical insights for the future integration of AI
technologies into clinical practice. 
The study aims to assess how AI-driven technologies
improve the accuracy and speed of disease diagnosis. With
the ability to analyze vast amounts of data from electronic
health records (EHRs), medical imaging, and genomic
information, AI models offer diagnostic tools that often
surpass traditional methods in sensitivity and specificity.
This objective focuses on evaluating real-world examples,
such as the use of deep learning in early cancer detection
and predictive models for cardiovascular risk stratification.
The study will also explore how AI algorithms can detect
subtle biomarkers and patterns that are otherwise
undetectable by conventional techniques.
A key objective is to analyze how AI contributes to
individualized treatment planning, ensuring that therapeutic
strategies are tailored to each patient’s genetic and
molecular profile. AI systems integrate multi-omics data
(genomics, proteomics, metabolomics) with clinical records
to recommend the most effective treatment options. This
includes evaluating AI applications in oncology for
predicting chemotherapy responses, and in chronic disease
management for personalizing drug dosages and lifestyle
interventions. By examining these applications, the study
aims to demonstrate how AI minimizes adverse effects and
maximizes therapeutic efficacy. 
The study seeks to explore how AI accelerates the drug
discovery process, from identifying potential therapeutic
targets to optimizing clinical trial designs. AI technologies,
such as generative adversarial networks (GANs) and natural
language processing (NLP), are revolutionizing the
development of novel compounds and repurposing the
existing drugs. A specific focus will be placed on AI’s ability
to predict molecular interactions, simulate biological
processes, and identify safe, effective drug candidates in
significantly less time compared to traditional methods.
Additionally, the role of AI in addressing rare diseases and
global health crises, such as COVID-19, will be critically
analyzed.
This study will also examine the ethical and practical
challenges that hinder the widespread adoption of AI in
personalized medicine. These include concerns about data
privacy, algorithmic transparency, and the potential for
biased outcomes due to unrepresentative training datasets.
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By identifying these challenges, the study aims to propose
actionable solutions, such as developing explainable AI
models and creating regulatory frameworks to ensure safe
and equitable use of AI-driven technologies.
Our research hypotheses are to guide this exploration
through the integration of AI into personalized medicine,
which significantly improves diagnostic accuracy and
disease prediction compared to conventional clinical
methods. Traditional diagnostic approaches often rely on
generalized criteria, while AI models can detect nuanced
patterns in patient data, enhancing early detection and risk
assessment. AI-based therapeutic decision-making leads to
superior patient outcomes by reducing adverse effects and
increasing treatment precision.
AI systems leverage comprehensive patient data to
recommend individualized treatment plans, avoiding the
trial-and-error approach often seen in conventional
medicine. The use of AI in drug discovery reduces the time
and cost associated with bringing new therapies to market,
while maintaining high standards of safety and efficacy. AI
accelerates the identification of potential drug candidates
and optimizes clinical trial designs, enabling faster
responses to emerging healthcare challenges.
The outcomes of this study will contribute to understanding
how AI can address critical inefficiencies in modern
healthcare systems. By improving diagnostic accuracy,
optimizing treatment strategies, and expediting drug
discovery, AI has the potential to reduce healthcare costs,
improve patient outcomes, and address global health
disparities. Additionally, the ethical insights provided by this
study will inform the development of policies and
frameworks necessary for the responsible integration of AI
into clinical workflows.

METHODS

 
Study design
 
This study employed a systematic literature review and
descriptive quantitative analysis to evaluate the role of
artificial intelligence (AI) in personalized medicine. The
research was conducted from January 2023 to December
2024 and included four phases:
- Identification of relevant studies across multiple databases
(January–March 2023).

 

- Data extraction and processing of key variables from
included studies (April–June 2023). 
- Descriptive statistical analysis of performance metrics and
generation of visualizations (July–September 2023).
- Interpretation of results and drafting of the final manuscript
(October–December 2024).

Data sources and search strategy
 
The primary sources included:
- PubMed―Biomedical and clinical studies focused on AI in
diagnostics and therapeutics.
- Scopus―Multidisciplinary research articles from medicine
and computer science.
- IEEE Xplore―Technical papers on AI algorithm
development.
- Web of Science―High-impact studies on genomics and
computational biology.
 
The search strategy combined Boolean operators and
keywords, such as: (“artificial intelligence” OR “machine
learning” OR “deep learning”) AND (“personalized
medicine” OR “precision medicine”) AND (“diagnosis” OR
“therapy”). Filters included studies published between 2015
and 2024, peer-reviewed articles, and English language
publications. Duplicate records were identified and
removed using EndNote software.
A total of 1,200 studies were identified during the initial
search. After applying inclusion and exclusion criteria, 50
studies were included in the final analysis.
 
Inclusion and exclusion criteria
 
Inclusion criteria: (i) peer-reviewed studies published
between 2015 and 2024; (ii) articles reporting sensitivity,
specificity, or accuracy for AI models; (iii) studies with real-
world applications of AI in diagnostics, therapeutics, or drug
discovery; (iv) validation of AI models on publicly available
datasets.

Exclusion criteria: (i) non-peer-reviewed publications (e.g.,
conference abstracts); (ii) studies without quantitative
performance metrics; (iii) articles focusing on hypothetical or
unvalidated AI applications.
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Data extraction and management
 
Variables extracted:
- Study metadata: authors, publication year, and journal.
- AI techniques: algorithms used (e.g., convolutional neural
networks, generative adversarial networks), datasets, and
evaluation metrics.
- Performance metrics: sensitivity, specificity, accuracy, and
area under the curve (AUC).
- Applications: diagnostics, therapeutic optimization, and
drug discovery.

Data management:

Data were stored in Microsoft Excel and analyzed using
Python (version 3.9) with Scikit-learn, TensorFlow, and
Matplotlib libraries for advanced statistical and graphical
analysis.
 
Statistical analysis
 
Sensitivity, specificity, and accuracy metrics from included
studies were summarized as means and standard
deviations. Trends were visualized using line graphs to
highlight performance differences between AI models.
Receiver operating characteristic (ROC) curves and
confusion matrices were used to evaluate the performance
of diagnostic AI models. Comparative analysis focused on AI
model performance in oncology and chronic disease
management. Line graph illustrates trends.
 
Case study selection
 
Three real-world case studies were selected to
contextualize findings:
- Diagnostics in oncology: AI models detecting malignant
lung nodules achieved sensitivity of 95% and specificity of
94%.
- Therapeutic optimization: AI-assisted drug response
prediction for rheumatoid arthritis reduced adverse drug
reactions by 30%.
- Drug discovery: AI-enabled discovery of glioblastoma
compounds shortened timelines by 85%.

Limitations
 
Exclusion of non-peer-reviewed studies may have
introduced publication bias. Variability in datasets and
reported metrics across studies may limit generalizability.
Descriptive methods without advanced meta-analytical
techniques restricted statistical synthesis.

RESULTS

Diagnostic performance of AI models in oncology
 
Artificial intelligence (AI) has demonstrated significant
potential in improving diagnostic accuracy, particularly in
oncology. A recent evaluation of AI-powered diagnostic
tools assessed their performance in detecting malignant
lung nodules from high-resolution CT scans. The study,
conducted on a cohort of 5,000 patients, reported the
following sensitivity, specificity, and overall accuracy metrics
(20):

Figure 1. Sensitivity and specificity of AI Models for lung cancer

diagnosis

Model A: Sensitivity of 92%, specificity of 89%, and overall
accuracy of 90.5%.
Model B: Sensitivity of 88%, specificity of 91%, and overall
accuracy of 89.5%.
Model C: Sensitivity of 95%, specificity of 94%, and overall
accuracy of 94.5%.
Table 1 presents the sensitivity, specificity, and accuracy
metrics of three AI models evaluated for lung cancer
diagnosis. Model C demonstrated the highest performance
across all metrics, highlighting its potential in improving
diagnostic accuracy.
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Figure 2 illustrates the sensitivity and specificity of three AI
models used for lung cancer diagnosis. Model C shows the
highest sensitivity (95%) and specificity (94%), outperforming
the other models in both categories.
These results highlight the superior diagnostic capabilities
of AI compared to traditional radiological methods. Detailed
performance metrics for each model are presented in Table
1, and a comparative visualization of sensitivity and
specificity is provided in Figure 1.
 
AI-driven therapeutic optimization in chronic diseases
 
In the domain of therapeutic optimization, AI has shown
remarkable efficacy in tailoring treatments to individual
patients. A clinical trial involving 500 patients with
rheumatoid arthritis used AI algorithms to predict responses
to different disease-modifying anti-rheumatic drugs
(DMARDs). The study reported the following outcomes (21):
AI predicted treatment efficacy with an accuracy of 87%,
compared to 65% using conventional methods.
Adverse drug reactions (ADRs) were reduced by 30% in the
AI-assisted group.
The average time required for treatment selection was
reduced by 85%, with AI providing results in 5 minutes
compared to 45 minutes for standard clinical approaches.
These results underscore the practical benefits of AI in
improving both clinical outcomes and efficiency. Table 2
compares the performance of AI-assisted and conventional
methods in treating rheumatoid arthritis. AI-assisted
methods demonstrated superior treatment efficacy, a
reduction in adverse drug reactions, and a significant
decrease in the time required for decision-making. 
 
Accelerated drug discovery with AI
 
The integration of AI into drug discovery processes has
significantly reduced the time and cost associated with
identifying new therapeutic compounds. In a study focused
on glioblastoma, a highly aggressive brain cancer, AI
systems screened over 10 million molecular compounds in
just four weeks. This effort identified three promising
candidates with high binding affinity to glioblastoma
receptors (22).
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Table 2. Comparison of AI-Assisted vs. conventional methods in
rheumatoid arthritis treatment

Table 3. Impact of AI in type 2 diabetes management

Table 1. Performance metrics of AI Models in lung cancer
detection

Figure 2. Comparison of timelines: AI-driven vs. traditional drug
discovery

Key benefits of AI-enabled drug discovery include:
- A reduction in the drug discovery timeline by 85%.
- Enhanced precision in identifying viable molecular
candidates.

Real-time predictive analytics for diabetes management
 
AI-powered predictive analytics have revolutionized chronic
disease management, particularly for type 2 diabetes. A
randomized controlled trial involving 1,000 patients
evaluated an AI-based glucose monitoring system
integrated with wearable devices. 
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The study revealed the following results (23):
- AI achieved 95% accuracy in predicting glycemic
fluctuations.
- Hyperglycemic episodes were reduced by 40%, compared
to 15% using standard methods.
- Patient satisfaction rates increased to 92%, reflecting the
system’s real-time guidance and ease of use.
The detailed comparative metrics are summarized in Table
3. This table highlights the impact of AI-powered glucose
monitoring systems on managing type 2 diabetes. AI-
assisted systems showed higher prediction accuracy (95%),
significantly reduced hyperglycemic episodes (40%), and
improved patient satisfaction rates (92%) compared to
standard methods.

Figure 2 demonstrates the significant time savings achieved
by AI-driven drug discovery processes compared to
traditional methods. AI reduces the timeline from 60 months
to just 9 months.

Ethical and bias challenges in AI implementation
 
Despite its numerous benefits, AI faces challenges related
to ethical considerations and algorithmic bias. A study
evaluating cardiovascular risk prediction tools reported that
models trained on predominantly European datasets
performed 20% less accurately in minority populations (24).
Addressing such biases requires diverse training data-sets
and robust validation techniques to ensure equitable
outcomes. A summary of the challenges identified in this
domain is provided in Table 4.

Table 4. Ethical challenges and bias in AI implementation

DISCUSSION

 
Diagnostic performance of AI models
 
The results of this study strongly support the hypothesis that
AI models significantly enhance diagnostic performance in
oncology. The evaluated AI systems demonstrated superior
sensitivity, specificity, and overall accuracy compared to
traditional radiological approaches. Specifically, Model C,
with a sensitivity of 95% and specificity of 94%,
outperformed the other models in detecting malignant lung
nodules Table 1.
These findings are consistent with emerging evidence
suggesting that deep learning algorithms, particularly
convolutional neural networks (CNNs), have revolutionized
medical imaging. Recent research analyzing over 10,000 CT
scans reported that AI models achieved diagnostic
accuracies exceeding 93% for detecting early-stage cancers
(25). Such high performance underscores the potential of AI
as a transformative diagnostic tool in clinical practice.
Despite these advancements, the generalizability of AI
models remains a critical issue. Studies have revealed that
AI systems trained on limited or homogenous datasets may
underperform in diverse populations, potentially
compromising diagnostic equity (26). Therefore, integrating
diverse and representative datasets during model
development is essential to ensure consistent performance
across different demographic groups.

Therapeutic optimization through AI
 
AI has demonstrated remarkable efficacy in optimizing
therapeutic strategies, particularly for chronic conditions
such as rheumatoid arthritis. In this study, AI achieved an
87% success rate in predicting treatment efficacy and
reduced adverse drug reactions by 30% Table 2. These
results highlight the potential of AI to personalize treatment
plans and improve patient outcomes.
This aligns with findings from recent investigations, which
reported that multi-omics AI models can predict individual
drug responses with up to 90% accuracy, significantly
reducing the trial-and-error approach often seen in
pharmacological treatments (27). By integrating genomic,
proteomic, and clinical data, AI can tailor therapies to the
unique biological profiles of patients, minimizing risks and
maximizing efficacy.
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However, one of the main barriers to implementing AI-
driven therapeutic optimization is clinician skepticism.
Research suggests that the adoption of explainable AI (XAI)
systems, which provide clear rationales for their
recommendations, is crucial for fostering trust and
increasing clinical acceptance (28).

Accelerated drug discovery
 
The study further validated the role of AI in accelerating
drug discovery. By utilizing generative adversarial networks
(GANs), this research identified three potential therapeutic
compounds for glioblastoma within four weeks,
representing an 85% reduction in the timeline compared to
traditional methods Figure 2.
Such time savings are vital, particularly in addressing urgent
public health challenges. For example, during the COVID-19
pandemic, AI models were instrumental in identifying
repurposed drugs and vaccine candidates, cutting discovery
timelines by months (29). This capability highlights AI’s
potential to revolutionize drug development by enabling
rapid screening of vast chemical libraries and accurate
predictions of molecular binding affinities.
Nevertheless, challenges remain in translating AI
discoveries into clinical practice. Regulatory frameworks
often lag behind technological advancements, and there is
a need for standardized guidelines to evaluate and approve
AI-discovered drugs (30).

Predictive analytics in chronic disease management
 
AI-powered predictive analytics have transformed chronic
disease management. In this study, AI-driven glucose
monitoring systems achieved 95% accuracy in predicting
glycemic fluctuations, reduced hyperglycemic episodes by
40%, and improved patient satisfaction rates to 92% Table
3. These results confirm the hypothesis that real-time
analytics can significantly enhance chronic disease
outcomes.
This aligns with recent findings showing that wearable
devices integrated with AI algorithms enable early
interventions and personalized recommendations, resulting
in better glycemic control and reduced complications in
Type 2 diabetes (31). Moreover, such systems empower
patients to take an active role in their care, fostering
improved adherence and long-term health benefits.
However, widespread adoption of AI in chronic disease 
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management is hindered by challenges such as cost,
accessibility, and privacy concerns. Addressing these
barriers requires collaboration between healthcare
providers, technology developers, and policymakers to
ensure equitable access to AI-powered tools (32).

Ethical and practical considerations
 
This study also highlighted critical ethical and practical
challenges, including algorithmic bias and data privacy
concerns Table 4. For example, recent analyses of
cardiovascular AI models revealed that systems trained on
predominantly European datasets performed up to 25% less
accurately in minority populations, underscoring the need
for diverse training data (33).
To address these issues, developers must prioritize diversity
and implement regular validation protocols to ensure
equitable outcomes. Additionally, compliance with data
protection regulations, such as the General Data Protection
Regulation (GDPR), is critical to maintaining patient trust and
safeguarding sensitive information (34). Transparency
remains another significant barrier to adoption. Many AI
systems operate as “black boxes” offering little insight into
how decisions are made. Developing interpretable models
that clinicians and patients can trust is essential for broader
acceptance (35).
This study has several limitations. First, the included evidence
is heterogeneous in populations, data sources, acquisition
protocols, outcome definitions, and performance metrics,
which constrains direct comparability and synthesis. Second,
most models are trained and evaluated on retrospective,
single-center datasets with limited external validation;
calibration, robustness checks, and head-to-head
comparisons with clinicians are inconsistently reported. Third,
reliance on published, peer-reviewed sources may introduce
publication bias, while incomplete reporting of missing-data
handling, thresholds, and preprocessing reduces
reproducibility. Fourth, fairness and explainability are variably
assessed, raising concerns about model bias in under-
represented groups and the interpretability needed for clinical
adoption. Finally, the absence of formal meta-analysis and a
scarcity of implementation outcomes (clinical impact,
workflow fit, patient-centered outcomes, and cost-
effectiveness) limit the strength and generalizability of
conclusions. Future work should prioritize prospective,
multicenter studies with preregistered protocols and
standardized reporting (e.g.,TRIPOD-AI/CONSORT-AI/SPIRIT-AI) 
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consistent external validation, and thorough assessment of
calibration and clinical utility (e.g., decision-curve analysis).
Studies should incorporate fairness audits, model- and data-
cards, and transparent release of code/artifacts where
feasible. Real-world impact evaluations and health-
economic analyses are needed to demonstrate value and
equity at scale. From an engineering perspective, privacy-
preserving learning (e.g., federated learning), strong data
governance, and post-deployment monitoring (MLOps, drift
detection, guardrails) are essential. Finally, seamless
integration into EHR-based workflows and interoperability
with clinical standards will be critical for responsible,
sustainable translation into personalized medicine (41).
In parallel, real-world adoption will hinge on addressing
ethical and privacy safeguards and algorithmic bias (42), as
well as the up-front integration costs of AI systems; rigorous
cost–benefit and budget-impact evaluations (43) are
needed to ensure sustainable deployment across diverse
healthcare settings.
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Across recent evidence, AI meaningfully advances
personalized medicine in four areas aligned with our aims:
(i) diagnostics—best-validated systems for lung-nodule
assessment reached sensitivity ~95% and specificity ~94%;
(ii) therapeutic decision-making—models predicting
response to DMARDs achieved ~87% accuracy with faster,
safer choices; (iii) drug discovery—AI compressed early
candidate identification by ≈85%; and (iv) chronic-disease
management—predictive analytics improved glycemic
control and patient experience. Translation at scale still
depends on bias mitigation, privacy and security
safeguards, representative datasets, and clinically
interpretable models within clear regulatory pathways.
Priority should be given to prospective, multi-site studies
with standardized reporting to confirm real-world utility and
equity.
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