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SUMMARY

Novel Coronavirus disease 2019 (COVID-19) represents an emergent global health burden that has
challenged the health systems worldwide. Since its sudden upsurge in 2019, many COVID-19 patients
have exhibited neurological symptoms and complications. Till now, there is no known effective
established drug against the highly contagious COVID-19 infection despite the frightening associated
mortality rate. This article aims to present the mechanism of action of coronavirus-2 (SARS-CoV-2), the
clinical neurological manifestations displayed by COVID-19 patients, and present polyphenols with
neuroprotective ability that can offer beneficial effects against COVID-19-mediated neuropathology.
Reports from COVID-19 clinical studies, case reports, and other related literature were evaluated for this
review. Neurological complications of COVID-19 include anosmia, acute cerebrovascular disease, acute
disseminated post-infectious encephalomyelitis, encephalitis, etc. Also, SARS-CoV-2 could be a
neurotropic virus due to its isolation from cerebrospinal fluid. Multiple neurological damages displayed
by COVID-19 patients might be due to hyperinflammation associated with SARS-CoV-2 infections.
Resveratrol, kolaviron, quercetin and apigenin are polyphenols with proven anti-inflammatory and
therapeutic properties that can extenuate the adverse effects of COVID-19. These polyphenols have been
documented to suppress c-Jun N- terminal kinase (JNK), phosphoinositide-3-kinase (PI3-K), extracellular-
signal-regulated kinase (ERK), nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB) and
mitogen-activated protein kinase (MAPK) pathways which are essential in the pathogenesis of COVID-19.
They also showed significant inhibitory activities against SARS-CoV-2 proteins. Taken together, these
polyphenols may offer neuroprotective benefits against COVID-19 mediated neuropathology via
modulation of the pathogenic pathways.
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INTRODUCTION

COVID-19 novel coronavirus pneumonia is
ranked amidst the nine deadliest global pandemics
that ever occurred in the world. It was first recorded
in 2019 at Wuhan, a Chinese city, and since its first
outbreak, the pandemic has dispersed wide to every
region of the globe having critical negative impact
on many countries of both developed and devel-
oping nations. This severe acute respiratory disease
is highly contagious and transmissible via a patho-
genic virus called SARS-CoV-2 to humans and an-
imals. Reports by the world health organization
(WHO) team on COVID-19 pandemic as of 25
November 2020 showed that COVID-19 has really
inflicted great havoc on human health and con-
stitutes a major danger to global public health. It was
reported that over 57.8 million cases of SARS-CoV-2
infections have been recorded with over 1.3 million
deaths globally (1, 2). In Nigeria, the most populous
country in Africa, over 66,000 cases had been con-
firmed and more than 1,160 mortalities recorded (1, 2).

COVID-19 has an average incubation period
of 3 days (3). The most prevalent medical manifes-
tations of COVID-19 (such as cough, fever, shortness
of breath, fatigue, and other complications) are
nearly the same to those of other viral pneumonias;
multiple organ failures and death were documented
in critical and severe cases (4). These indications are
prominently expressed in aged persons, perhaps
owing to lingering and chronic underlying diseases
such as diabetes, hypertension, neurodegenerative
disorders, or heart diseases (5). The spread of the
virus (SARS-CoV-2) amid individuals happens when
there is an infiltration of infected aerosols from
cough, sneeze, or respiratory droplets into the lungs
through inhalation in the nose or mouth.

Clinical case reports have documented a
spectrum of neuropathological features displayed by
COVID-19 patients. These neurological manifesta-
tions include anosmia, acute cerebrovascular disease,
acute disseminated post-infectious encephalomyeli-
tis, encephalitis, Guillain-Barré syndrome, acute dis-
seminated post-infectious encephalitis, and viral
meningitis (6). The presence or confirmation of
SARS-CoV-2 in cerebrospinal fluid suggests that it
could invade and infect the central nervous system
(CNS) as a neurotropic virus inducing multiple
neurological impairments (6).

This article presents the pathogenic mecha-

nism of SARS-CoV-2 and neurological complications
of COVID-19. Furthermore, we present the possible
intervention of potential anti-COVID-19 phytochem-
icals in the treatment of neuropathology associated
with COVID-19. The literature search for this article
was done on Medline, Google Scholar, and PubMed
Central using the key words: clinical features, co-
ronavirus, SARSCOV-2, COVID-19, and complica-
tions.

POSSIBLE MECHANISM BY WHICH
SARS-COV-2 INDUCED NEUROLOGICAL
DAMAGE

Several mechanisms have been projected for
the neuropathology linked to SARS-CoV-2 in ref-
erence to clinical manifestations displayed by
COVID-19 patients. Mao et al. (7) documented hy-
posmia and anosmia in COVID-19 patients. This
indicates that SARS-CoV-2 may be spread directly
from the cribriform plate near the olfactory bulb to
brain regions (8). SARS-CoV-2 can diffuse to the
CNS via enteric nerve and sympathetic afferent
mediated by gastrointestinal tract infection (9). Fur-
thermore, anterograde and retrograde transmission
can mediate neuro-invasion of SARS-CoV-2 through
the sensory and motor nerve endings (10), coupled
with involvement of motor proteins (dynein and
kinesins), in particular through the vagus nerve from
the lungs (11).

The brain is more vulnerable to oxidative and
neuroinflammation insults due to the low level of
cytoprotective endogenous enzymes. The cytokine
storm syndrome (hyperinflammation) accompany-
ing SARS-CoV-2 infections may be one of the causes
of the neurological impairments observed in
COVID-19 patients. Viral infections have been doc-
umented as one of the chief agents that induce sec-
ondary  haemophagocytic ~ lymphohistiocytosis
(sHLH) (12). sHLH similarly referred to as macro-
phage activation syndrome (MAS) is a severe health
disorder which includes a diverse group of hyper-
inflammatory conditions arising after an infringe-
ment in the interaction between genetic predis-
position and initiators such as infections. One of the
features of sHLH is an abrupt and severe hyper-
cytokinaemia due to inapt persistence of histiocytes
and cytotoxic T-lymphocytes, which eventually
leads to multi-organ failure, haemophagocytosis,
and mortality (13). Other features of sHLH include
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persistent fever, cytopenias, and hyperferritinaemia;
pulmonary involvement occurs in approximately
50% of patients (14).

In the brain, the activation of glial cells cause
brain damage and severe inflammation with the
secretion of pro-inflammatory cytokines, including
TNF-alpha, interleukin-2, and interleukin-5 (15).
Neuroinvasion of SARS-CoV-2 can activate macro-
phage via CD4+ cells to produce interleukin-6 which
is a principal constituent of cytokine storm syn-
drome via granulocyte-macrophage colony-stimu-
lating factor, thus causing damage to the neuronal
cells.

SARS-COV-2 MECHANISM OF ACTION

The genetic investigation on SARS-CoV-2
showed that the comprehensive genome sequence
recognition rates of bat SARS coronavirus (SARSr-
CoV-RaTG13) and SARS-CoV were 96.2% and 79.5%,
respectively (16). Compared with other coronavi-
ruses, SARS-CoV-2 proteins for viral replication,
spikes formation, and nucleocapsid are initiated in
specific genes in ORF1 (17). The virus (SARS-CoV-2)
gain entrance into the host cell and invade it via
series of cellular alterations and modifications like
other types of beta-coronaviruses. Subsequently,
SARS-CoV-2 binds to the angiotensin-converting
enzyme 2 (ACE2) receptor in the human and/or
host’s alveoli of the lungs and respiratory epithelium
via the RBM of the S protein (18, 19). A similar type
of receptors has been documented in the viral
genome of SARS-CoV and SARS-CoV-2, particularly,
the receptor binding motif (RBM) and the receptor
binding domain (RBD) (20-22). Attachment of SARS-
CoV to the receptor leads to the recruitment of
cellular proteases to split the S protein into S1 and S2
domains. Transmembrane protease serine 2
(TMPRSS2), human airway trypsin-like protease
(HAT) and cathepsins are the cellular proteases that
cleave the spike protein and enhance additional
penetration modifications (23, 24). The splitting of S
protein facilitates the activation of 52 via a con-
formational modification thereby allowing the
insertion of the internal fusion protein (FP) into the
membrane, which facilitates the entry of the virus
into the host.

There is a prospect that SARS-CoV-2 utilized
the mechanism similar to that of SARS-CoV as its
receptor-binding domain (RBD) binding motif com-

prises the nucleotides connected to ACE2. Once
SARS-CoV-2 enters into its host cell, ACE2 is shed
and ADAM metallopeptidase domain 17 (ADAM17)
exuviate it into the extra membrane space. This re-
sulted into high concentration of angiotensin II from
the transition of angiotensin I to angiotensin II by
ACE2 and concomitant respiratory distress because
angiotensin II negatively regulates the renin-an-
giotensin pathway, and consequently damage the
alveoli by increasing pulmonary vascular perme-
ability (25). Subsequent to SARS-CoV-2 proteins
translation in the host, ORF3a protein is synthesized
which codes for a SARS-CoV-2 related calcium (Ca?")
ion channel. It reacts with TNF receptor associated
factor 3 (TRAF3) and initiates the transcription of
nuclear factor kappa-light-chain-enhancer of acti-
vated B-cells (NF-kB) pathway, resulting in the
secretion of the pro-IL-1B gene (26). ORF3a together
with TRAF3 can mobilize the
complex which includes caspase 1, Nod-like receptor
protein 3 (NLRP3) and apoptosis-associated speck-
like protein containing a CARD (ASC). Another sig-
naling which includes caspases activation, mito-
chondrial damage, ROS production, and Ca? influx
activates pro-IL-1B to interleukin 1 beta (IL-1B)
which enhances cytokine production. Furthermore,
ORF8b protein through NLRP3 facilitates the
inflammasome pathway. ORF8b protein is longer in
SARS-CoV-2 (26). Further studies are needful to
ascertain the benefit or significance of the extra-
nucleotides as contained in SARS-CoV-2. The E pro-
tein that forms an ion channel is also implicated in
the cytokine’s over-secretion (an occurrence referred
to as cytokine storm syndromes which has been
reported to be one of the major causes of respiratory
distress in COVID-19) via NLRP3 inflammasome
pathway (Figure 1) (27).

c-Jun N- terminal kinase (JNK) pathway is

inflammasome

also one of the vital SARS-CoV pathogenic path-
ways. It is activated by ORF3a, ORF3b, and ORF7a
and results in pro-inflammatory cytokines over-se-
cretion. These over-secretions of inflammatory cyto-
kines have deleterious effects on lung and can accel-
erate lungs damage (28). Secondary haemophago-
cytic lymphohistiocytosis (sHLH) is a cytokine pro-
file with a hyperinflammatory syndrome described
by an abrupt hypercytokinaemia with multi-organ
failure, which has been reported in COVID-19 se-
verity. This also features increased granulocyte-col-
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Figure 1. SARS-CoV-2 mechanism of action

ony stimulating factor, interferon-y inducible protein
10, tumor necrosis factor-a, interleukin (IL)-2, mac-
rophage inflammatory protein 1-a, IL-7, and mono-
cyte chemoattractant protein 1 (28).

Additionally, SARS-CoV-2 exhibited higher
infectivity and transmissibility but lower mortality
rate when compared with other types of respiratory
syndrome coronaviruses: severe acute respiratory
syndrome coronavirus (SARS-CoV) and Middle East
respiratory syndrome coronavirus (MERS-CoV). The
noted increase in virulence of SARS-CoV-2 may be
owing to great intensity and affinity at which SARS-
CoV-2 attached to ACE2 and noted mutation in its
genome sequence. The reported modifications on the
SARS-CoV-2 gene include shorter 3b segments, alter-
ation on Nsp 2 and 3 proteins, absent 8a, differences
in orf8 and orf10 proteins, and longer 8b (29 - 32).

196

POLYPHENOLS WITH
NEUROPROTECTIVE EFFECTS AND
SARS-COV-2 INHIBITORY ACTIVITIES

Quercetin

Quercetin, 3,3',4'5,7-pentahydroxyflavone
(Figure 2) is a broadly disseminated plant poly-
phenol, found as conjugates with residual sugars
(quercetin glycosides) in many grains, fruits, seeds,
leaves, and vegetables (capers, onions, berries, and
apples) (33). The highest levels of quercetin among
vegetables were found in red leaf lettuce, asparagus
(Asparagus officinalis L.), and onions (Allium cepa L.),
while peas, green peppers, broccoli, and tomatoes
contain lower levels. Quercetin arabinoside, quer-
cetin galactoside, and quercetin glucoside are the
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Figure 2. Basic structure of apigenin, quercetin, resveratrol and kolaviron

tables, fruits and other food items. They are first
deglycosylated by gut microbiota-derived betaglu-
cosidase or lactase phlorizin hydrolaseto quercetin
aglycone before passive absorption in the small
intestine (34). The quercetin aglycone produced then
go through series of metabolic reactions to form
methylated, sulphated, and glucuronidated metab-
olites, signifying participation of the phase II en-
zymes COMT (catechol-O-methyltransferase), SULT
(sulfotransferase) and UGT (uridine 5-diphospho
glucuronosyl transferase), respectively.

Studies have reported that quercetin exhibited
anti-inflammatory, immunoprotective (35), antioxi-
dant (36), and antiviral (37) effects. Its medicinal
effects on cancer, nervous system disorders, gastro-
intestinal tract function, infections, inflammatory
processes, diabetes, and cardiovascular diseases
have been documented (38-40). Previous findings

have documented the inhibitory activities of quer-

cetin against reverse transcriptase (41), proteases
(42), and polymerases (43). Also, it has been studied
in models of viral infection to bind to viral capsid-
proteins and inhibit DNA gyrase (44, 45).

During viral infection, the entrance of virus
into the host cell is a vital step and has been targeted
as a possible point of intervention in antiviral treat-
ments (46 - 48). Quercetin has been reported to
inhibit HIN1 and H3N2 influenza infection of
MDCK cells through binding to hemagglutinin pro-
teins which is accountable for membrane fusion
during virus entry and virus-mediated haemolysis
(49). Furthermore, quercetin has been studied to
interfere with DNA and RNA polymerases in viral
infections. During adenoviruses (ADV-3,-8,-11) and
herpes viruses (HSV-1, 2) infections, quercetin was
reported to suppress viral DNA and RNA poly-
merase (43, 50, 51) and inhibit the early stage of viral
replication (45, 52). Li et al. (53) also reported anti-
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viral activities of quercetin against HIV via its ability
to suppress protease, integrase and reverse tran-
scriptase. Quercetin upregulated IL-13 and sup-
pressed the levels of long terminal repeat (LTR) gene
expression, TNF-a, p24 in HIV infection (35).

Possible antiviral effect of quercetin on many
types of coronaviruses has been described by Yi et al.
(54). Quercetin metabolite have been documented to
bind to SARS-CoV 3CL protease and suppressed its
proteolytic activity (55). Quercetin has been studied
through computational studies to interact with the
52 domain of spike protein of SARS-CoV-2, thus
altering the virus entry process (56). The obstruction
of virus entrance into the host cell signifies a vital
approach in antiviral therapy and quercetin hinders
viral membrane fusion for SARS-CoV and influenza
in vitro (54).

Resveratrol

Resveratrol (3,5,4"-trihydroxystilbene) is a nat-
urally occurring lipophilic and phenolic phyto-
chemical found abundantly in edible plants and
easily crosses the plasma membrane after oral ab-
sorption (57 - 59). It is a polyphenolic phytoalexin
which comprises two aromatic rings linked by a sty-
rene double bond which permits its trans- and cis-
isomers formation (60, 61). Resveratrol has been re-
ported as a possible reason accountable for the
French paradox (62, 63), a phenomenon described by
an epidemiological study that the French population
displayed a comparatively low rate of coronary heart
disease, in spite of their high consumption of sat-
urated fat diet (64, 65). A number of preclinical
studies proposes that resveratrol has the capability
to influence a variety of human diseases, this is due
to its cardioprotective (66, 67), antiviral (68, 69), anti-
apoptotic (70,71), anti-inflammatory (72, 73) anti-
diabetic (74, 75), and antioxidative (74, 76) proper-
ties.

Evidences from experimental studies has es-
tablished the neuroprotective properties of resver-
atrol which may be beneficial in combating neurol-
ogical disorders shown in COVID-19 patients. Res-
veratrol enhances enzymes that are responsible in
stress response, for instance, quinone reductase 2
(QR2), a cytosolic enzyme which influences the re-
lease of destructive activated quinone and ROS,
thus, exhibiting a pivotal role in the cellular response
(77). Previous report has showed that QR2 is
overproduced in the hippocampus of rat’s brain in a

model of learning deficits. Hippocampus is a brain
region which is seriously affected in Alzheimer
disease and it is primarily responsible for memory
and learning. This indicates that the overproduction
of this enzyme initiates memory impairments (78).
Similarly, neuroprotective effect of resveratrol has
been documented to include the inhibition of mi-
croglia-mediated neuroinflammation (79). Resvera-
trol has been demonstrated to inhibit the activation
of NF-«B signaling pathways and mitogen-activated
protein kinases (MAPKSs) in lipopolysaccharides-in-
duced dopaminergic neuronal death (79).

Activation of microglia is the hallmark of
neuroinflammation and plays a critical role in the
pathogenesis of neurological diseases (80, 81). Mi-
croglia are the neuronal immune cells that perform a
vital role in the homeostasis in the central nervous
system, and act as the first line of defense during
cellular assaults, oxidative damage or progression of
neurological diseases in the brain (82). During mi-
croglial activation (microgliosis), different kinds of
proinflammatory markers such as chemokines, pros-
taglandins, reactive nitrogen species, and cytokines
are released. The overproduction and accumulation
of these proinflammatory factors lead to the damage
of the neuronal cells and ultimately cause a release
of soluble factors and debris (79). Many experi-
mental studies have demonstrated the neuropro-
tective ability of resveratrol to inhibit the activation
of microglia (83-85). Resveratrol has been reported to
suppress upsurge expression of IL-1f3, nitric oxide
and TNFa that accompanied the activation of mi-
croglia which mediate phosphorylation of p38 and
NF-kB signaling (85, 86). Resveratrol inhibited se-
cretion of TNFa, IL-13 and reactive nitrogen species,
and activation of microglia in the ischemic cortex
(87).

Anti-covid-19 potentials of resveratrol have
been reported in an in-silico study designed for drug
development targeting SARS-CoV-2 Spike Protein of
COVID-19 (55). The study reported that resveratrol
displayed a strong binding ability with the S2 do-
main of SARS-CoV-2 spike protein. This spike gly-
coprotein, located on the surface of the virus (SARS-
CoV-2), is a class I fusion protein which enhances the
initial attachment of the virus with ACE2 receptor
and its consecutive fusion with the host cells (88).
The ability of resveratrol to bind to this spike protein
indicates that resveratrol may inhibit or alter the
mechanism by which the virus gain entrance into its
host. Furthermore, resveratrol has been reported to
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modulate phosphoinositide-3-kinase (PI3-k), NF-xB
signaling and mitogen-activated protein kinases
pathways whose end products release cytokines.
These modulatory effects may provide beneficial
effects in COVID-19 by inhibiting the over-secretion
of inflammatory cytokines, which resulted in the
occurrence of cytokine storm syndromes that accel-
erate lungs damage and multi-organ failure, which is
related to COVID-19.

Apigenin

Apigenin (4’,5,7-trihydroxyflavone) is one of
the most explored phenolics and the most commonly
disseminated flavonoid in many plant species. It is
predominantly present in herbs (oregano, thyme,
basil, chamomile), phytochemical-based beverages
(tea, beer, and wine), in vegetables (parsley, celery,
onions), and fruits (guava, oranges). It is also found
extensively in the plant species of the genus:
Matricaria, Achillea, Artemisia, and Tanacetum (89).
Apigenin has been documented to have anticancer
activities as well as theurapeutic effects on depres-
sion, Alzheimer’s disease, amnesia, and insomnia
(89). The dietary availability of apigenin could
facilitate an efficacious intervention to inhibit acti-
vation of microglial and prevent the onset of
Alzheimer’s disease.

After absorption, apigenin can easily be trans-
ported through the circulatory system, crossing the
blood-brain barrier to the brain, where it acts on the
CNS and exhibits an interaction with the GABAA-
receptor (90, 91). Sloley et al. (92) reported the inhib-
itory activity of apigenin on neuronal monoamine
oxidases. Unregulated activities of monoamine
oxidases may be one of the causes of some psy-
chiatric cases and neurological disorders. However,
monoamine oxidases inhibitors such as apigenin
showed efficacy as antidepressant and anxiolytic
agents.

The protective roles of apigenin in the amy-
loid double
Alzheimer’s disease mouse has been reported by
Zhao et al. (93). Apigenin is also a potent cognition-
enhancing, anti-amyloidogenic, antioxidant, neuro-

precursor  protein transgenic

protective, and anti-inflammatory agent with effi-
cacy in the prevention and/or treatment of neuro-
degenerative diseases (93). Nabavi et al. (94) in a
review article emphasised the therapeutic potentials
of apigenin in some human clinical trials and exper-
imental animal models. Furthermore, apigenin’s

chemical structure, metabolism of action, and phar-
macokinetics were elucidated in relation to its me-
dicinal usefulness in depression, Parkinson’s and
Alzheimer’s diseases (94).

Apigenin has also demonstrated strong anti-
inflammatory property in lipopolysaccharide-in-
duced macrophages by reducing the level of inter-
leukin 6 (IL-6) {a pro-inflammatory cytokine}. It also
inhibited tumour necrosis factor (TNF-a), inter-
leukin 6, and cluster of differentiation 40 (CD40) pro-
duction via suppression of interferon gamma-
mediated STAT1 (signal transducers and activators
of transcription 1) phosphorylation in microglia (95).
An experimental study has established the inhibitory
ability of apigenin on nuclear factor kappa-light-
chain-enhancer (NF-kB), facilitated by inhibition of
lipopolysaccharide-mediated phosphorylation of the
p65 subunit (96). Apigenin also suppressed the ac-
tivities of adhesion molecules which is very essential
to mitigate oxidative stress and prevent oxidative
damage (97).

Apigenin promotes the release of cytopro-
tective enzymes such as glutathione-s-transferase,
superoxide dismutase, and catalase to inhibit and
neutralize cellular oxidative. Similarly, apigenin en-
hances activation of Nrf-2 signaling pathway leading
to increase in phase II enzymes production (98, 99).
Anticancer property of apigenin in human cell
culture models has been reported to be via suppres-
sion of angiogenesis and metastasis by interfering
with the main signaling molecules in mitogen-
activated protein kinase (MAPK) pathways which
include c-Jun N-terminal kinases (JNK), extracel-
lular-signal-regulated kinase (ERK), and p38 (100).

Apigenin has been documented to interact
with both S1 and S2 domains of the spike protein of
SARS-COV-2 with substantial binding energies thus
unsettling viral attachment and internalization into
the host (56). Similarly, in silico study in our labo-
ratory revealed that apigenin displayed a significant
binding affinity with the SARS-CoV-2 major pro-
tease (6LU7). The result also suggested that apigenin
could be a potential inhibitor of SARS-COV-2 (101).

Kolaviron

Since time immemorial, medicinal plants have
become a source of novel and affordable drug com-
pounds as plant-derived medicines have made
significant impacts to human health and well-being
(102 - 107). Garcinia kola (bitter kola) is a medicinal
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plant and a member of the Guttiferae family. It is an
evergreen tree largely cultivated and highly es-
teemed for its edible nuts in West and Central
Africa. Garcinia kola is commonly used by the
people due to its ability to improve mouth odour
and cause nervous alertness. In African traditional
medicine, bitter kola is employed in the treatment
and management of laryngitis, throat infections,
bronchitis, inflammatory disorders, and as an anti-
bacterial, antiparasitic, and antipurgative. The seeds
have also been used in the treatment of chronic
hepatitis and cholangitis with significant improve-
ment of liver functions. Similarly, Garcinia kola
seeds are used as general tonic to boost the immune
system (108, 109).

Many experimental findings have established
the traditional medicinal uses of Garcinia kola.
Kolaviron, the biflavanone of Garcinia kola, has been
documented to protect against oxidative stress and
hepatotoxicity induced by many xenobiotics which
includes aflatoxin, 2-acetylaminofluorene, carbon
tetrachloride, ~dimethylnitrosamine, paracetamol,
phalloidin in animal studies (110-113). Furthermore,
the pharmacologically activities of biflavanone of
Garcinia kola have been shown with many pharma-
cokinetic preferences over basic monomeric flavo-
noids as they pull through first-pass metabolism
which incapacitates most flavonoids (108).

Neuroprotective abilities of kolaviron has
been reported in many neuronal cell lines. Abarikwu
et al. (114) documented the protective roles of
kolaviron against atrazine-induced toxic insult in
human dopaminergic SH-SY5Y cells. The findings
revealed that the antiapoptotic and antioxidative
properties of Kolaviron make it effective to prevent
against Similarly,
kolaviron was reported to protect against apoptotic
cell death in pheochromocytoma derived (PC12)
cells exposed to Atrazine (115). Igado et al. (116)
reported the biochemical and morphological ex-
amination on the potential protective effects of

atrazine-induced  toxicities.

kolaviron in vanadium-induced neuronal damage in
rats. Kolaviron has been shown to suppress neuro-
inflammation in BV2 microglia via the Nrf2/ARE
protective (117).  Also,
Olajide et al. (118) reported multidirectional sup-

antioxidant mechanism
pression of cortico-hippocampal neurodegeneration
by kolaviron. In another study, Omotoso et al. (119)
reported that kolaviron ameliorated cuprizone-in-
duced multiple sclerosis in the brain of experimental
animals.

In a recent study, we reported the neuro-
protective effects of kolaviron in striatal oxidative
stress and neuroinflammation associated with
rotenone model of neurodegenerative disease (120).
In the study, we showed that kolaviron restored
motor/
neuromuscular incompetence and locomotor im-
pairment. Also, kolaviron effectively ameliorated the
neurobiochemical imbalance, striatal neurodegen-

eration, neuroinflammation and altered antioxidant

rotenone-associated exploratory deficits,

defence system in the brain of the neurodegen-
erative rats. Kolaviron displayed a potential capacity
to enhance efficient gait with minimal severity and
improved coordination. This shows that kolaviron
could be a prospective drug for the effective man-
agement and/or treatment of Parkinson’s disease.
Kolaviron has been noted to be a potential
anti-COVID-19 drug candidate in a computational
experimental study aimed to screen phytochemicals
in drug repurposing approach to combat COVID-19
(101). The study employed USCF Chimera in virtual
screening and molecular docking for possible in-
hibitors of SARS-CoV-2. Kolaviron was observed to
exhibited a higher docked score with the SARS-CoV-
2 major protease (6LU7) above remdesivir, a recom-
mended drug for the treatment of COVID-19. This
showed that kolaviron could offer an effective
inhibitory effect on SARS-CoV-2 and be a more effec-
tive drug candidate in the treatment of COVID-19.

CONCLUSION

COVID-19 is a highly infectious and severe
acute respiratory disorder induced by a morbific
virus referred to as SARS-CoV-2. Many COVID-19
patients have displayed neurological symptoms and
signs which include anosmia, acute cerebrovascular
disease, acute disseminated post-infectious enceph-
alomyelitis, encephalitis, etc. The underlying mech-
anisms of pathogenic actions of SARS-CoV-2 include
those activated by ORF3a, ORF3b, and ORF7a via the
JNK pathway, which induces lung damage; re-
duction of ACE2 to enhance pulmonary vascular
permeability and damage the alveoli; immunosup-
pression; hyper-inflammation characterized by a
fulminant and fatal hyper-cytokinaemia with multi-
organ failure. Resveratrol, quercetin, kolaviron and
apigenin are polyphenols from medicinal plants
with proven antioxidant, anti-inflammatory, and
pharmacological activities that can inhibit SARS-
CoV-2 and mitigate COVID-19. These polyphenols
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have been documented to suppress JNK and MAPK
pathways which are essential in the pathogenesis of
COVID-19. SARS-Cov-2 virus infection dysregulate
and exacerbate inflammatory process in the lung
leading to increased secretion of IL-6 which ulti-
mately results to a “cytokine-storm”. The polyphe-
nols with their robust anti-inflammatory properties
may suppress cytokine-induced organ impairment
and enhance survival in lethal infections. Taken
together, resveratrol, quercetin, kolaviron and api-
genin could be potential drug candidates in the
treatment/management of COVID-19 mediated neu-
ropathology.
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SAZETAK

Pojava nove bolesti izazvane korona virusom (COVID-19) predstavlja opterecenje i izazov za globalni
zdravstveni sistem. Od iznenadne i nagle pojave ovog virusa 2019. godine, kod mnogih kovid-19 bolesnika
javili su se neuroloski simptomi i komplikacije. Do sada nije pronaden efikasan lek protiv ove
visokozarazne infekcije uprkos zastrasujucoj stopi smrtnosti. Cilj ovog rada je predstavljanje mehanizma
delovanja korona virusa 2 (COVID-19), klinickih neuroloSskih manifestacija zabeleZenih kod kovid-19
bolesnika, kao i polifenola sa neuroprotektivnim karakteristikama, koji imaju blagotvorne efekte kod
neuropatologije izazvane kovidom-19. Izvestaji klinickih studija o kovidu-19, prikazi slucajeva i sli¢ni izvori
u literaturi pregledani su zbog potreba ovog rada. Neuroloske komplikacije kovida-19 ukljucuju anosmiju,
akutnu cerebrovaskularnu bolest, akutni diseminovani postinfektivni encefalomijelitis, encefalitis itd.
Takode, COVID-19 mozZe biti i neurotropni virus zbog izolacije iz cerebrospinalne te¢nosti. Mnogobrojna
neuroloska ostecenja mogu se javiti kod kovid-19 bolesnika zbog hiperinflamacije udruzene sa SARS-CoV-2
infekcijama. Rasveratrol, kolaviron, kvercetin i apigerin su polifenoli sa dokazanim antiinflamatornim i
terapeutskim svojstvima, koja mogu da ublaZe nezeljene efekte kovida-19. Potvrdeno je da ovi polifenoli
suprimiraju c-Jun N-termalnu kinazu (JNK), fosfatidilinozitol 3-kinazu (PI3-K), ekstracelularnim signalom
regulisanu kinazu (ERK), nuklearni faktor kapa B celija (NF-kB) i mitogenom aktiviranu protein kinazu
(MAPK), Sto je esencijalno u patogenezi kovida-19. Takode pokazali su znacajnu inhibitornu aktivnost
usmerenu ka SARS-CoV-2 proteinima. U celini, ovi polifenoli mogu da ispolje neuroprotektivne efekte u
slucaju neuropatologije izazve kovidom-19, preko modulacije puteva patogeneze.

Kljucne reci: neuropatologija, polifenoli, COVID-19, SARS-CoV-2, kolaviron, apigenin, kvercetin
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