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SUMMARY

Aim: This study aimed to predict the molecular targets of cipargamin in humans and estimate the
structural dynamics and binding affinity of their interactions compared to that of Plasmodium falciparum
P-type ATPase 4 (PfATP4).

Methods: In silico methods were used in this study which include target prediction, structure modeling
and dynamics, and molecular docking.

Results: The results showed that cipargamin had 100% probability of binding to the human adenosine A3
receptor (ADORAS3) and about 15% for other human targets which include tyrosine-protein kinase JAK2,
adenosine A2a receptor, phosphodiesterase 5A and cathepsin K. The results of molecular docking showed
that binding energy of cipargamin to PfATP4 and hADORA3 were -12.40 kcal/mol! and -13.40 kcal/mol-!
respectively. The docking was validated by the binding of enprofylline and fostamatinib to PfATP4 and
hADORAS3. Overall, the binding of cipargamin was closely similar to that of fostamatinib. This study
shows the potential of cipargamin to modulate the activities of PfATP4 of the parasite (P. falciparum) as
well as ADORAS3 of the host (Homo sapiens).

Conclusion: All the previous studies of cirpagamin have not implicated its action on hADORAS3, thus this
study provides an insight into a possible role of hADORAS3 in the mechanism of malarial infection.
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INTRODUCTION

In 2020, the World Health Organization
(WHO) has reported that malaria, a vector-borne
infectious disease caused by the hematoprotozoan
parasite of genus Plasmodium, remains a disease of
global health burden with the presence in 73 coun-
tries, leading to an estimated 229 million cases and
around 409,000 deaths in year 2019. Antimalarial
drugs have been the mainstay of control and pro-
phylaxis against malaria, although there is a current
effort in the development of vaccine. Few drugs
were developed against malaria in the 20t century
with the most important being chloroquine and arte-
misinin. However, the ability of P. falciparum to de-
velop resistance to these treatments has threatened
their continuing efficacy and raised the importance
of combinations as well as development of new
drugs and novel targets for the 21¢t century in order
to achieve malaria-free human generation.

In 2010, cipargamin (KAE609 or NITD609), an
active spiroindolone derivative compound, was re-
ported for antimalarial activity, killing culture-
adapted as well as field isolates of P. falciparum and
P. wvivax with an average effective concentration
(ECs0) of less than 10 nM (1). In 2014, cipargamin was
reported for single-dose cure without resistance, at
an average inhibitory concentration (ICso) of 550 pM
against asexual blood-stage of P. falciparum and elim-
ination half-life of about 24 hours in humans (2). In
2016, the therapeutic outcome of cipargamin in pa-
tients was found double when compared to arte-
misinin which is the present global standard antima-
larial therapeutant (3).

Studies have shown that cipargamin inhibits
the development of gametocyte and oocyst in mos-
quitoes, with no significant cytotoxicity in mam-
malian cells (1, 4). A biophysical study revealed that
parasites treated with cipargamin exhibit changes in
intracellular pH and they are unable to extrude in-
tracellular sodium (5). The inhibition of adenylate
and guanyl cyclases prevented the production of
cAMP and cGMP by P. falciparum, which led to inhi-
bition of cAMP/cGMP-dependent protein kinase A
activities (6, 7). A study has shown that rhoptry pro-
tein RhopH2 could regulate new permeability path-
ways induced in the erythrocyte membrane of P.
falciparum and that these pathways possibly serve as
the main route of influx of Na* to the infested cell (8).

Moreover, calcium-dependent protein kinase 5
(PfCDPKS5; PE3D7_1337800) as well as P-type cation

ATPase (PfATP4; PF3D7_1211900) have been re-
ported to be great potential antimalarial drug targets
(9, 10). The involvement of PfATP4 as the direct
target of many potential antimalarial compounds in-
cluding cipargamin, has been a point of contention
(11). To provide cogent information contributing to
this well-thought dispute, this study used in silico
methods to investigate human molecular targets of
cipargamin and evaluated the molecular binding
and structural dynamics of PfATP4.

MATERIALS AND METHODS
In silico target prediction

The structure of cipargamin was obtained
from PubChem Compound Database
(https://pubchem.ncbi.nlm.nih.gov/) in canonical
Simplified Molecular Input Line Entry Specification
(SMILES) and Structure Data File (SDF) formats. The
SMILES was wused for Target prediction on
SwissTargetPrediction server
(http://www.swisstargetprediction.ch/) where Homo
sapiens was designated as target organism (12).

In silico structural modelling

The protein sequence of PfATP4 (Plasmodium
falciparum P-type ATPase 4) and most predicted
target for cipargamin hADORA3 (Homo sapiens
Adenosine receptor A3; ADORA3) were obtained
from UniProt database (www.uniprot.org) in FASTA
format. The three-dimension (3D) structure of these
target proteins were not available in the Protein Data
Bank (PDB) database. Thus, their protein sequences
(UniProt ID: Q9U445 for PfATP4, and UniProt ID:
PODMSS8 for hADORA3) were used for structural
modelling on Swissmodel server (13), using protein
crystal structure with PDB ID: 5MPM as template for
Q9U445 (14), and crystal structure of the human
adenosine Al receptor with PDB ID: 5UEN as
template for PODMSS (15).

In silico structural dynamics

The modelled structures of PfATP4 and
hADORA3 were fixed using PDBFixer implemented
in OpenMM v7.3, on CPU platform (16). The protein
was then subjected to fast structural flexibility sim-
ulation on CAB-flex 2.0 server at default settings
(17). The cluster of model structures, contact map
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and root-mean square fluctuation (RMSF) of the
residues were obtained.

Molecular docking studies

The blind molecular docking studies were car-
ried out on Blind Docking server (18). Enprofylline
(DrugBank ID: DB00824 (APRD00273)) and
Fostamatinib (DrugBank ID: DB12010) are inhibitors
of hADORAS3 and thus they were used as ligands to
compare and validate the binding of cipargamin.
The structure of cipargamin, enprofylline and
fostamatinib were retrieved from PubChem Com-
pound Database in Structure Data File (SDF) format.
Files were converted from SDF to PDB by using the
PyMol software. Docking was initiated on Blind
Docking Server, by uploading the target proteins
(modelled structures of PfATP4 and hADORA3) and
ligands (Cipargamin, Enprofylline and Fostamatinib)
in pdb format. The docking simulations of the li-
gands with target proteins were run at default set-
tings. The binding energies distribution, cluster pop-
ulations, ligand-protein interactions, and energetic
contribution to binding of the ligand-protein com-
plexes were obtained as the docking outputs. The re-

sult protein-ligand interaction was visualized and
profiled (19, 20).

RESULTS

The results showed that cipargamin bound to
Adenosine A3 receptor (ADORA3) with an 100%
probability and about 15% for other human targets
which include tyrosine-protein kinase JAK2, aden-
osine A2a receptor, phosphodiesterase 5A and ca-
thepsin K (Table 1).

The QMEAN and GMQE of structural model
were -4.94 and 0.52 for PfATP4 as well as -3.18 and
0.76 for hADORAS3. The sequence identity of PfATP4
and hADORAS3 to their respective template protein
were 29.32% and 49.50% (Table 2). Structural flexi-
bility simulation of PfATP4 showed a wide range of
amino acid residue fluctuation with highest root-
mean-square fluctuation (RMSF) of 7.115 Armstrong
(A) at residue 636 followed by residue 804 (5.472A),
516 (4.920A) and others, whereas fluctuations of
hADORA3 were found in 7 clusters of amino acid
residues with highest RMSF of 3.881A at residue 213
followed by residue 155 (3.038A), 158 (2.752A), 258
(2.273A) and others (Figure 1 and 2).

Table 1. Predicted targets in humans with percentage probability of cipargamin binding

S.No TARGET CIPARGAMIN
Name Gene ID UniProt ID % probability
1 Adenosine A3 receptor ADORA3 PODMS8 100
2 Tyrosine-protein kinase JAK2 JAK2 060674 15
3 Adenosine A2a receptor ADORA2A P29274 15
4 Phosphodiesterase 5A PDE5A 076074 15
5 ¢-Jun N-terminal kinase 1 MAPKS P45983 15
6 Beta-secretase 1 BACE1 P56817 15
7 Gamma-secretase PSEN2 PSENEN NCSTN| P49810 Q9NZ42 Q92542 15
APH1A PSEN1 APH1B |Q96BI3 P49768 Q8WW43
Cathepsin K CTSK P43235 15
9 Hepatocyte growth factor receptor MET P0858 15
10 | 11-beta-hydroxysteroid dehydrogenase 1 HSD11B1 P28845 15
11 Ribosomal protein S6 kinase 1 RPS6KB1 P23443 15
12 |Serine/threonine-protein kinase Aurora-A AURKA 014965 15
13 Nitric-oxide synthase, brain NOS1 P29475 15
14 | Epidermal growth factor receptor erbB1 EGFR P00533 15
15 Rho-associated protein kinase 1 ROCK1 Q13464 15
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Table 2: Structural modelling result

Target |UniProtKB| Template | Seq |Oligo-state| QSQE |Found | Method
Identity| by

PfATP4 Q9U445 |5mpm.1.A| 29.32 | monomer | 0.00 [HHblits X-ray

hADORA3 | PODMS8 | 5uen.l1.A | 49.50 (homo-dimer] 0.23 |HHblits X-ray
Resolution |Seq Similarity] Range | Coverage Description GMOQE | QMEAN
3.30A 0.34 117 - 1257 0.76 Sarcoplasmic 0.52 -4.94
/endoplasmic reticulum
calcium ATPase 2

3.20A 0.43 7 -305 0.95 Adenosine receptor Al 0.76 -3.18

Figure 1. Structural flexibility dynamics of PFATP4 (A) Cluster of 10 model structures; (B) Contact map;
(C) Fluctuation plot

The results of molecular docking (Figure 3 - 8)
showed the binding energy of (1) cipargamin to
PfATP4 and hADORA3 as -12.40 kcal mol! and -13.40
kcal mol? respectively (Figure 3 and 4); (2)
Enprofylline to PfATP4 and hADORAS3 as -7.70 kcal
mol? and -6.70 kcal mol?, respectively (Figure 5 and
6); and (3) Fostamatinib to PfATP4 and hADORAS3 as
-12.00 kcal mol' and -11.00 kcal mol", respectively
(Figure 7 and 8). The binding of cipargamin and
fostamatinib increased down the PfATP4 gradient
while that of enprofylline decreased down the
PfATP4 gradient (Figure 9). Overall, the binding of
cipargamin is similar to that of fostamatinib.

The amino acid residues involved in the
binding of (1) cipargamin with PfATP4 are ILE378,
PRO384, ASN1082, GLU1084, ARGI1113, and
ASP1116; (2) enprofylline with PfATP4 are ASN155,
ILE157, SER230, SER246, ILE263, ALA309, THR310,
and VAL331; (3) fostamatinib with PfATP4 are
TRP1071, TRP1078, GLY1128, CYS1130, ARGI1131,
LYS1133, ASN1135, LYS1136, SER1138 and GLU1144;
(4) cipargamin and hADORAS3 are PHE168, LEU246,
and ASN250; (5) enprofylline and hADORAS3 are
THR94, TYR176, SER181 and TRP243; (6) fostamatinib
and hADORAS3 are LEU90, LEU91, THR94, PHE168,
TRP243 and HIS272.
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Figure 2. Structural flexibility dynamics of hADORA3 (A) Cluster of 10 model structures; (B) Contact map;
(C) Fluctuation plot

Clustered Docking Results (ligand on receptor):
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Figure 3. Cipargamin docking to PfATP4 showing binding interaction and energetics of Cluster #1 (-12.40 kcal.mol"")
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Clustered Docking Results (ligand on receptor):
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Figure 4. Cipargamin docking to hRADORA3 showing binding interaction and energetics of Cluster #1
(-13.20 kcal.mol)

Clustered Docking Results (ligand on receptor):
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Figure 5. Enprofylline docking to PfATP4 showing binding interaction and energetics of Cluster #1 (-7.70 kcal.mol1)
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Clustered Docking Results (ligand on receptor):
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Figure 6. Enprofylline docking to hRADORAS3 showing binding interaction and energetics of Cluster #1
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Figure 7. Fostamatinib docking to PfATP4 showing binding interaction and energetics of Cluster #1 (-12.00 kcal.mol!)
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Clustered Docking Results (ligand on receptor):
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Figure 8. Fostamatinib docking to hADORA3 showing binding interaction and energetics of Cluster #1
(-11.00 kcal.mol)
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Figure 9. Highest binding interaction of cipargamin, fostamatinib and enprofylline to the top and down
cavity of PFATP4
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DISCUSSION

The QMEAN is used to provide global and
local absolute quality estimates of a single model
structure based on various geometric properties (21)
and it shows the estimated degree of undeviating
structural features observed in comparison to that of
experimental structures of similar size (22). The
QMEAN score for highest quality model structure is
greater than or equal to -4.0. The resulting GMQE
score reveals the reliability of the alignment of the
model with the template sequence, and it ranges
between 0 and 1, where the best reliability is equal to
1. Protein dynamics is central to all biological events
which include bio-catalysis, signal transduction and
cellular regulation (23). The structural dynamics of a
protein describes the possible functions it will per-
form in the biological system. To overcome the com-
plexity involved in the experimental study of protein
flexibility, nowadays computational methods are
used to simulate the proteins based on validated
dataset from existing experiments (17).

PfATP4 gene is expressed at all stages of P.
falciparum asexual erythrocytic cycle (1), and found
as the component of the plasma membrane (1, 24).
Malaria is often associated with hyponatremia in the
host. The increased influx of sodium ion (Na*) in a
Plasmodium infected erythrocyte causes an upsurge
in Na* concentration in the erythrocyte cytosol, and
triggers the Na*/K* ATPase with two-fold activity in
order to maintain a low erythrocytic Na* concentra-
tion (25). The conservation of a low cytosolic [Na*] is
interrupted by the P-type cation-ATPase inhibitors
and that PfATP4 encoded by P. falciparum (26, 27) is
involved in the active efflux of Na* from the parasite
5).

The parasite-induced permeability pathway
which has been described as an (unknown) endog-
enous pathways for the influx of Na* in the host
cytosol (11) could be via human ADORA3
(hADORAB3), in that it matches the unique and ex-
plainable target for this compound. hADORA3 be-
longs to the family member of G protein-coupled re-
ceptors (GPCRs) which could be triggered by adeno-
sine (28). hADORAS3 gene is located on chromosome
1p13.3 and encodes a protein that consists of 318
amino acids, which is located in the cell membrane.
Based on gene ontology, the biological process of
ADORA3 includes inflammatory response; acti-
vation of adenylate cyclase activity; negative regula-
tions of cell migration, cell population proliferation

and NF-kappaB transcription factor activity, and
regulation of heart contraction. Copious amounts of
hADORA3 gene are expressed in the lung, liver, and
immune cells (29), but moderate amounts are
expressed in the brain, heart, and other tissues (30).
Pharmaceutically, hADORA3 agonists have good
therapeutic prospect as anticancer, anti-inflamma-
tory, and cardioprotective agents (31, 32), with sev-
eral of them at the clinical trial stage of drug devel-
opment (2, 33). At the cellular level, hADORA3
activation leads to adenylate cyclase (AC) inhibition
to reduce cytosolic cyclic AMP (cAMP) levels via the
inhibitory guanine nucleotide-binding protein (Gi
protein).

In molecular docking, the binding energies
that are higher than -5.0 are good indication of affin-
ity of the ligand to the target enzyme or receptor.
This study showed that Trp243 and His272 were
implicated in the binding of fostamatinib to
hADORAS3. It has been reported that residue D58,
W243 and H272 were conserved in hADORA3 pro-
tein, and that H272 could directly or indirectly in-
volve in the coordination of Na* (28). The residue
W243 plays a critical role in hADORA3 activation,
and an experiment has shown that W243A/F muta-
tions reduced agonist-mediated receptor activation
without disturbing agonist binding (34) and signif-
icant changes were observed in agonist effectiveness
and signaling prejudice for the W243F hADORA3
mutant (35). hADORA3 is a multi-pass plasma
membrane protein that is modulated by few chem-
ical compounds which include aminophylline
(DB01223), enprofylline (DB00824), fostamatinib
(DB12010) and piclidenoson (DB05511).

Piclidenoson is indicated as an anti-inflam-
matory compound which is used to for the treatment
of rtheumatoid arthritis. Piclidenoson operates as an
antagonist of hADORAS3. In normal tissues, there is
low hADORAS3 expression but extreme expression
and overexpression have been observed in inflam-
matory cells and peripheral blood mononuclear cells,
respectively (36). hADORAS3 deactivation by a spe-
cific antagonist often regulates the NF-kappaB sig-
naling pathway in inflammatory cells and initiates
immunocompetency effects. Enprofylline is a syn-
thetic dimethylxanthine derivative compound which
is structurally associated to caffeine and theophyl-
line. Enprofylline inhibits hRADORA3 and phospho-
diesterase in erythrocytes, and prevent deformity of
the membrane of erythrocytes. Enprofylline also
alters the viscosity of the blood by decreasing the
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concentration of plasma fibrinogen and raising the
fibrinolytic activity (37).

Aminophylline is the ethylenediamine salt of
theophylline that prevents the degradation of cAMP
by inhibiting phosphodiesterase type IIIl and IV. The-
ophylline acts as a hADORAS3 antagonist (38) and
blocks transcription of inflammatory genes by trig-
gering histone deacetylase (39). The active metabo-
lite of fostamatinib, called R406, inhibits hADORAS3,
phosphodiesterase (PDE5), spleen tyrosine kinase
(Syk), UDP-glucuronosyltransferase (UGT1A1l), ca-
thepsin L, 5-lipoxygenase, fatty acid amide hydro-
lase, and adenosine or monoamine uptake transpor-
ters (40, 41).

The malaria parasite feeds on red blood cells
(RBCs) by degrading Hb in an acidic food vacuole to
provide required amino acids for the parasite, create
sufficient space for parasite growth and help main-
tain the osmotic integrity of the infected cell (42). The
infected erythrocytes are protected from oxidative
stress by biomineralization and sequestered of free
oxidized heme and H20: (which are produced from
hemoglobin degradation and they are toxic to the
parasite) to form hemozoin through the activity of
histidine-rich protein HRP2 (43, 44). Adenosine is
readily released by RBCs infected by Plasmodium,
or after oxidative stress, through the action of
ectonucleotidases CD39 and CD73 which are present
on RBC surface (45). Inhibition of hADORA3 can
deactivate phospholipase C from releasing Ca?* that
acts as a second messenger to elicit various cell re-
sponses. The mechanism of action of cipargamin

would be by inhibition (antagonism) of hADORA3
and PfATP4 in infected erythrocytes, thus pre-
venting the deformity of erythrocyte membrane,
trapped oxygen radicals within the infected erythro-
cyte, and induced programmed cell death, a process
called eryptosis (43, 46).

CONCLUSION

This study has shown the possibility of malar-
ia drug cipargamin to modulate the activities of
PfATP4 of the parasite (Plasmodium falciparum) as
well as ADORA3 of the host (Homo sapiens). All the
previous studies of cirpagamin had not implicated
its action on hADORA3, thus this study provided an
insight to possible role of hADORA3 in the mech-
anism of malarial infection. Also, the fact that major
inhibitors of hADORA3 have indication as anti-in-
flammatory drug, cipargamin could be also repur-
posed for this indication. Further research would be
the study of inhibitory kinetics of cipargamin bind-
ing to hADORAS.
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Cipargamin bi mogao da inhibira humani adenozinski receptor
A3 sa vec¢im afinitetom vezivanja od parazita Plasmodium
falciparum P-tipa ATPase 4: In silico studija
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SAZETAK

Cilj. Cilj studije bilo je predvidanje molekularnih meta cipargamina kod ljudi, kao i procena
strukturalne dinamike i afiniteta vezivanja njihovih interakcija u poredenju sa parazitom Plasmodium
falciparum P-tipa ATPase 4 (PfATP4).

Metode. U studiji su koriS¢ene in silico metode koje ukljucuju predvidanje mete, modelovanje
strukture i dinamike i molekularno pristajanje. Rezultati su pokazali to da je cipargamin imao stoprocentnu
mogucnost vezivanja za humani Adenosine A3 receptor (ADORA3) i oko 15% mogucnosti vezivanja za
druge humane mete, koje ukljucuju protein tirozin kinazu JAK2, adenozin A2a receptor, fosfodiasterazu 5A i
katepsin K.

Rezultati . Rezultati molekularnog pristajanja pokazali su to da je energija vezivanja cipargamina
za PfATP4 iznosilac -12,40 kcal/mol?, a energija vezivanja za hADORAS3 -13,40 kcal/mol’. Molekularno
pristajanje vrednovano je vezivanjem enprofilina za PfATP4 i fostamanitiba za hADORA3. U sustini,
vezivanje cipargamina jako je slicno vezivanju fostamanitiba. Studija pokazuje potencijal cipargamina da
menja aktivnosti PFATP4 parazita, kao ADORA3 domacina (Homo sapiens).

Zakljucak. Dosadasnje studije o cipargaminu nisu ukazale na njegovo delovanje na hADORA3, tako
da ova studija pruza uvid u moguéu ulogu hADORA3 u mehanizmu malarije.

Kljuéne reci: cipargamin, KAE609, PfATP4, ADORAS3, malarija, antiinflamatorni, strukturalno modelovanje i
dinamika
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