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SUMMARY

Introduction/Aim. Herbs have been a vital renewable source of medicine throughout human history as a
large proportion of the global population still depends on them for their health benefits. The increasing
popularity of herbal supplements has raised an obvious concern about the overall safety and potential
interaction with other drugs in situ. The intent was to spur future research on herb-drug interactions as
well as the mechanisms of interaction to understand the consequences of such interactions.

Methods. The review was conducted by a systematic search of relevant literature using the databases of
Google Scholar, Science Direct, Mendeley, Scopus, and PubMed. Publications written in English were
used. Many herbal products are reported to exhibit herb-drug interaction with known orthodox medicines.
The inhibition-induction mechanism triggers chain reactions which often result in reduced drug
bioavailability, toxicities, or undesirable side effects. Some herbal phytoconstituents reportedly bind
CYP2C9, CYP2C19, CYP2E1, and CYP3A1 among numerous others temporarily or irreversibly.

Conclusion. The study was concluded by reiterating the imperativeness to routinely and regularly inform
both physicians and patients of the inherent dangers such as reduced efficacy and increased toxicities
associated with herb-drug interactions (HDI). Herb users should be regularly advised on the appropriate
use of herbal supplements to avoid the risk of adverse drug interactions during co-administrations or in
combination therapies. As both synergistic and antagonistic effects could be observed in HDI, further
preclinical and clinical empirical studies are required to underscore the mechanism and extent of HDI.
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INTRODUCTION

The upsurge in the global application of com-
plementary and alternative medicines which heavily
relies on herbal preparations calls for urgent atten-
tion with respect to interactions of the chemical con-
stituent of a plant with prescription medicines (1).
Herb-drug interactions (HDIs) are interactions that
occur between herbal product/ dietary supplement
and a conventional drug when administered togeth-
er. This interaction could involve either pharmacoki-
netic or pharmacodynamic mechanisms. While phar-
macokinetic interaction refers to the effect of a herbal
drug on the absorption, distribution, metabolism
and excretion of a conventional drug, pharmaco-
dynamic interactions are associated with the phar-
macological activity of the drug and may affect an
enzyme, receptor site, or organ system. Thus, the
outcomes could be additive, synergistic, or antago-
nism.

Pharmacokinetics (PK) is simply defined as
the action of the body on the drug while exerting its
action in the body. It is the quantitative study of
drug absorption, distribution, metabolism, and ex-
cretion (2). It does not study only healthy individuals
but also includes research on PK variations under a
variety of physiological (e.g. pregnancy) and disease
conditions. It also covers the underlying mecha-
nisms, potential drug-drug interactions (DDIs),
dietary-drug interactions, HDIs, and strategies (dose
adjustment) to achieve precise dosage regimens for
better therapeutic outcomes (3). Thus, PK study is
always required to determine the relations and un-
derlying mechanisms of drug actions and its clinical
benefits and is important for lead identification and
optimization in drug discovery (4).

Despite the advancement in drug metabolism
and pharmacokinetics (DMPK) research, it is largely
due to the advancement in bio-analytical chemistry,
pharmacology, molecular biology, medicinal chem-
istry, biochemistry, and computer science. Research
involving herb-drug interaction seems not to have
fully utilized these technologies. This is largely due
to complex constituents of herbs, study designs (e.g.
dose and treatment periods) and assay systems (e.g.
in vitro, or in vivo preclinical studies or clinical stu-
dies). These are the reasons for the inconsistent pre-
dictions and/or results associated with HDIs studies
(5-7).

Our previous studies on combinations of a
medicinal plant and a natural product with a ver-

satile pharmaceutical excipient revealed that bio-
availability and efficacy can be altered through inter-
action (8 - 10). This impelled us to carry out a review
on herb and drug interaction.

This review provides a comprehensive over-
view of current trends in pharmacokinetics and
further discusses the trends in PK-based HDIs and
its underlying mechanisms as well as the clinical re-
levance in Nigeria.

LITERATURE
SEARCH/METHODOLOGY

Literature search from 2003 up to 2023 was
undertaken using a range of scientific databases
(Google Scholar, PubMed, Science Direct, Mendeley,
and Scopus) using the keywords: pharmacokinetics,
herb-drug interaction, mechanism of pharmacoki-
netic action, clinical relevance, and experimental
models.

FACTORS DETERMINING
PHARMACOKINETICS-BASED
HDIs

Absorption is the movement of a drug from its
site of administration into the blood from where it is
distributed to its site of action and permeates
through different body barriers until the drug is in-
activated and finally excreted from the body. Alter-
ations in the absorption, distribution, metabolism,
and excretion of a drug affect its pharmacokinetic
profile (8). Hence, drug metabolizing enzymes
(DMEs) and transporters (e.g. P-glycoprotein) are
key determinants in pharmacokinetics. Drug trans-
porters are usually present in the intestine where
they are involved in drug absorption, an important
parameter of pharmacokinetics (9). Drug-metabo-
lizing enzymes are largely present in the liver where
most drug metabolism occurs. Most of the herbal
drug interactions are metabolism-based and medi-
ated by the cytochrome P450 system that is largely
involved in phase 1 reaction (10, 11). Also, trans-
criptional and post-transcriptional factors (e.g. nu-
clear receptors, noncoding RNA) are important de-
terminants of PK. Studies exploring these de-
terminants can explain the mechanism of HDIs, im-
prove the success of drug development, and prevent
drug recall post market. However, herbal products
and other natural products are not usually consi-
dered during the process of drug development either
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at the preclinical or clinical stages of development.
Nonetheless, some significant clinical HDIs were
reported (12).

DRUG METABOLIZING ENZYMES
MODULATION OF
PHARMACOKINETICS

Drug metabolizing enzymes mediate the
metabolism of exogenous (drugs, herbs, chemicals)
and endogenous (e.g. bilirubin) substances. Most
drugs become inactive mainly through metabolic
transformation, producing more polar metabolites
that are readily excreted. Hence, DMEs play a crucial
role in the mechanism mediating pharmacokinetic-
based herb-drug interaction. For instance, induction
of DMEs may lead to a decrease in drug concen-
tration in the body and consequent efficacy reduct-
ion. The metabolism of drugs/herbs by the meta-
bolizing enzymes may be classified into phase I,
phase II, and phase III reactions (13). The phase I
reactions usually involve enzymes such as cyto-
chrome P450 oxidases (CYPs) that introduce reactive
or polar groups into drugs/herbs. This is usually
followed by phase II reactions; the enzymes involved
in this reaction are transferases (e.g. uridine glucu-
ronyl transferase, UGTs). Lastly, in phase III re-
actions, the product of phase III reactions may be
further processed, before it is recognized and pum-
ped out of the cells by the efflux transporter (13).
There is a better understanding of the roles played
by DMEs in the modulation of PK. These include
identifications of more isoforms of metabolizing
enzymes and their selective substrates, inducers, and
inhibitors. The roles of other non-CYPS oxidative en-
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zymes (e.g. flavin monooxygenases) and conjugative
enzymes (e.g. carboxylases) are now being consi-
dered in PK studies (14).

Herbal products also undergo phase I and
phase II reactions to be excreted from the body. If a
herbal product is co-administered with a drug, it
may inhibit or induce the activity or the expression
of specific DMEs that could be the same enzymes
responsible for the metabolism of that drug, leading
to herb-drug interactions (15).

PHASE 1 DRUG-METABOLIZING
ENZYME CRITICAL FOR PK

Phase 1 enzymes may be grouped as CYPs
and non-CYPs oxidative enzymes. CYPs are respon-
sible for many drug metabolisms, mainly located in
the inner membrane of mitochondria or the smooth
endoplasmic reticulum of the liver cells (16). How-
ever, some CYPs are found outside the liver cells
(e.g. CYP1A1); they can also be found in the cells of
the lungs, kidneys as well as in the intestine. They
are classified based on their amino acid sequence
homology into families, subfamilies, and isoforms
(14). When two CYPs have about 40% similarity in
their amino acid sequence, then they belong to the
same family. The families are numbered, such as
CYP1, CYP2, and CYP3 etc. Subfamilies are identi-
fied based on 55% similarities in sequence homo-
logy; it is usually represented with a capital letter,
for example CYP1A, CYP1B, CYP2A, etc (17). Lastly,
individual ‘isoforms’ that originated from a single
are represented by the number which usually fol-
lows the letters that represent subfamilies, such as

Table 1. Endogenous and exogenous substrates of CYPs

Family | Number of subfamilies [Endogenous/Exogeneous substrates
CYP1A 2 Aflatoxin, estrogen, melatonin, and naproxen
CcYP2 13 Arachidonic acid, coumarin, diazepam, halothane,
and paracetamol
CYP3A 2 Erythromycin, nifedipine, and testosterone
UGT1A 8 Bilirubin, eicosanoids, imipramine, and p-Nitrophenol
UGT2A 3 Hydeoxycholic acid, tobacco carcinogens
UGT2B 7 Carvedilol, efavirenz, diclofenac, and bile acids
UGT3 1 N-acetylglucosamine
UGTS 1 Bile acid

CYPs- cytochrome P450. Adapted from Liu et al. (2)
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CYP1A1, CY1A2 and others (18-20). A total of 57
human CYP genes in 18 families have been identified
(13, 2, 21). CYP1 to CYP4 families oxidized several
exogenous and endogenous chemicals (Table 1),
while CYP5 and higher families majorly metabolize
endogenous substrate in a highly substrate-specific
manner (20).

The understanding of differences in mecha-
nism of metabolism-mediated DDI/HDIs involving
the metabolizing enzyme activities is very critical for
improving the clinical use of drugs either with herbs
or another drug. Recent studies have shown several
herbs and chemical entities as inhibitors/inducers of
CYPs. For example, Styrax liquidus (resin of
Liquidambar orientalis Mill) inhibits CYP3A (22). The
complexity of phyto-constituents of herbs is the
reason for the differences seen in the effects of the
herbal remedy on the regulation of multiple enzy-
mes. For instance, Sophora flavescens inhibit CYP2B6,
CYP2C8, CYP2C9 and CYP3A activities (23). Other
regulatory factors such as nuclear factor (Pregnane X
receptor) can alter the expression of CYPs. Tumor
suppressor p53 is known to regulate CYP2B10 di-
rectly (24).

It is important to understand how drug/herb
exposure could alter drug metabolism mechanism
underlying many HDIs. For example, the area under
the curve (AUC) of glibenclamide was markedly in-
creased when co-administered with Tinospora cordi-
folia extracts (25). This was due to a significant in-
hibition of CYP2C9, the enzyme involved in the me-
tabolism of this drug.

The extrahepatic CYPs also have an important
role in drug metabolism. There is evidence that
C1A1 and CYP1B1 expressed in the lungs have a role
in the metabolism of dolutegravir (26). Likewise,
CYPs found in the intestine and kidneys are im-
plicated in the metabolism of some herbs (27). More
studies have shown the role of renal enzymes in
herbs metabolism. Precisely, gentamicin-induced re-

nal toxicity was shown to be alleviated by Moringa
oleifera seed oil (28).

Lastly, CYP polymorphisms also play a critical
role in PK. Recent data are now available on the re-
lative content of individual CYPs isoforms. Total
CYP concentrations are significantly varied between
the Chinese and Caucasian populations, and the me-
tabolic capabilities of CYPs in Chinese liver micro-
somes was significantly lower (< 50%) in the clear-
ance of substrates for CYP1A2, CYP2C9, CYP2C19,
and CYP2E1 than those of Caucasian populations
(29).

NON-CYPs OXIDATIVE ENZYMES

The non-CYP oxidative enzymes also contri-
bute immensely to drug metabolism. Hence, they are
also important for consideration during drug de-
velopment and PK study. They can be broadly clas-
sified based on the type of reactions they catalyze:
they can be oxidative, hydrolytic, reductive and con-
jugative. Examples of non-CYP oxidative enzymes
are: flavin-containing monooxygenases (FMOs), mo-
noamine oxidases (MAOs), hydrolase (e.g. carbo-
xyesterases), aldehyde oxidase (AO) and others (30,
31).

CES (carboxylesterase)-mediated reactions
have been overlooked; it belongs to the family of
a/p- hydrolase and about five of them have been
identified in humans (CES1, CES2, CES3, CES5and
CES6). They are ubiquitous but the human liver pre-
dominantly contains CES1 with smaller quantities of
CES2, while the intestine almost only contains CES1
(31). Substrates and inhibitors have been identified
for some of these enzymes (32) as shown in Table 2.
Recently, scientists found that corylifolinin, a flavo-
noid found in Fructus psoraleae, inhibits carboxy-
lesterase-1 (CES1), while bavachinin, found in the
same plant species, inhibits carboxyesterae-2 (CES2)
(33, 34).

Table 2. Examples of different drugs that are substrates and modulators of carboxylesterases

Family Substrates

Inhibitors

Inducers

CES1 Clopidogrel, enalapril,

oseltamivir

Curcumin,
caffeic acid

Trinitrobenzene, sulfonate,
sulforaphane

CES2 Flutamide, irinotecan | Loperamide, Telmisartan| Urethane dimethacrylate

CES- carboxylesterase. Adapted from Wang et al. (32)
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FMOs are involved in the metabolism of ethio-
namide, a second-line anti-tuberculosis drug (35). 2-
mercaptobenzimidazole, indole-3-carbinol, and
methimazole are known inhibitors of FMOs (35).
Another non-CYPs oxidative enzyme is human mo-
noamine oxidase (hMAOQO). There are two different
isoforms, namely, hMAO-A and hMAO-B. These en-
zymes are involved in the metabolism of mono-
amines. Herniarin, a phytochemical obtained from
Artemsia dracunculus were identified as inhibitors of
hMAO (36).

IMPORTANCE OF PHASE 11
ENZYMES IN PK

Phase II enzymes (glucuronyl transferases,
glutathione—S-transferases and N-acetyltransferases,
etc.) play a major role in exogenous and endogenous
substance metabolism (37). Uridine diphospho-
glucuronosyl transferases (UGTs) are the most im-
portant enzymes in phase 2 metabolisms and glucu-
ronidation is the most common reaction of phase II
metabolisms (38). UGTs are present in the smooth
endoplasmic reticulum, especially in the liver; they
are classified into four gene families (UGT1, UGT2,
UGT3 and UGTS). UGT1 and 2 play a major role in
xenobiotics glucuronidation, while UGT4 and 8 roles
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are minimal (39). Chemicals either natural or syn-
thetic with functional groups such as -OH, -COOH, -
SH2 and -NH2 are generally suitable substrates for
UGTs (40). Several substrates and inhibitors have
been identified for different isoforms of UGTs (Table
3). Diosmetin, a naturally occurring flavonoid (main-
ly extracted from Galium verum) is metabolized by
the UGTs (2). Also, UGT1A3 is involved in the glu-
curonidation of alpinetin, while metizolam (a de-
pressant) is metabolized by UGT1A4 (41, 42). UGTs
are diverse and have weak specificity for their sub-
strates, hence, herb-drug interactions easily occur
with UGTs (2). Highly selective and specific inhi-
bitors/substrates have been identified in herbs and
other sources; for example, resveratrol activates the
expression of UGT1A8 and emodin inhibits UGT2B7
activity in various reports (43, 44).

Polymorphism in the genes encoding UGTs
plays a critical role in the regulation of its contents
and activity. Consequently, the variation could
either be normal or abnormal metabolic activities
with resultant alterations in the PK parameters (2,
45). Most of the findings on gene polymorphism are
extrapolated for use in African populations, even
when variant frequencies can differ significantly in
different populations (45). The UGT1A4*3 genetic
polymorphism is associated with low posaconazole

Table 3. Exogenous and endogenous chemicals metabolized by UGTs. Reproduced (48)

Family | Enzymes Endogeneous/exogeneous substrate
UGT1A | UGT1A1 Estradiol, Bilirubin, axitinib
UGT1A3 Bile acid, NSAIDS
UGT1A4 Eicosanoids, imipramine
UGT1A6 Serotonin, 1- Napthol 4- nitrophenol
UGT1A7 Icaritin
UGT1A8 Fatty acids, opiods, coumarins
UGT1A9 Steroids, Niflumic acid
UGT1A10 | Estrogens, dopamine, nitrosamine
UGT2A | UGT2A2/3 | Hyodeoxycholic acid, tobacco carcinogens
UGT2B | UGT2B4 Arachidonic acid, Naftopidil
UGT2B7 Sex steroids, zidovudine, codeine
UGT2B10 | Eicosanoids, amitryptiline
UGT2B11 | Hydroxlestrogens
UGT2B15 Sex steroid hormones, lorazepam
UGT2B17 Sex steroid hormones, flavonoids
UGT2B28 | Sex steroid hormones
UGT3 | UGT3 N- acetylglucosamine
UGT8 | UGT8A1 Bile acids
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plasma concentrations in patients with hematolo-
gical malignancies (46).

Other phase II enzymes such as glutathione S-
transferase (GST) and sulfonyl transferase (SULT)
are also important in mediating phase II reactions.
Although these enzymes are being overlooked,
recent studies have shown that they play an im-
portant role in metabolism-based HDIs and drugs
PK (47). GST catalyzed the binding of glutathione to
many electrophilic compounds in phase 2 reactions.
About seven classes of GST isoforms have been
identified in humans - alpha, zeta, theta, mu, pi,
sigma, and omega (48). Endogenous substrates such
as heme are metabolized by these enzymes. Xeno-
biotics substances such as busulfan are metabolized
by GST (49).

REGULATORS OF DRUG
METABOLIZING ENZYMES
(DMEs)

Drug metabolizing enzyme expressions are
regulated by human nuclear receptors. They are
transcription factors that regulate target genes in-
volved in drug metabolism (2). The transcription fac-
tors (peroxisome proliferators-activated receptor
(PPAR), liver X-receptor (LXR), hepatocyte nuclear
factor (HNF)) have been of interest lately regarding
drug disposition because they are now found to re-
gulate many drug-metabolizing enzymes (44). LXR
controls the transcription of CYP7A1, CYP3Alland
CYP2EL1 (50).

Traditional transcription such as pregnane X-
receptor (PXR), constitutive androstane/activated
receptor (CAR), and microRNA (miRNAs) are the
factors that control gene expressions by directly bin-
ding to specific DNA sequences (51). However,
UGTs and CYPs are modulated mainly via epi-
genetic regulation by changing the chromatin archi-
tecture (52). This form of regulation accounts for
gender specific regulations; for example, UGT1A
gene repression is mediated by recruitment of his-
tones in females (52).

In summary, drug metabolizing enzyme ex-
pression and activities are regulated by multiple
factors, such as drug or herb chemical constituents,
gene polymorphisms, nuclear receptors, ethnic vari-
ations, and even gender. These factors have critical
effects on PK. Recently, non-CYP oxidative and UGT
metabolizing enzymes have gained attention in
DMPK research. It is important to comprehend the

factors associated with the modulation of DME ex-
pression and its activities in predicting potential
pharmacokinetic herb-drug interactions.

TRANSPORTERS' MODULATION
OF PK

This review focused more on DMEs role in PK
herbs-drug interactions. However, it is important to
mention the role of drug transporters in pharmacoki-
netics. Drug transporters are membrane-bound pro-
teins that act like gatekeepers for cells and control
the uptake and efflux of drugs. They are very crucial
in the pharmacokinetics, efficacy, and toxicity of
drugs/herbal product. Any factor that can cause
alteration in the expression and/or activity of drug
transporter will have consequences on the PK of the
affected drug. Co-administration of herbal product
with drugs may lead to induction or inhibition of
drug transporters resulting in a change in drug phar-
macokinetics, which may potentially cause HDIs.

There are two major families of drug trans-
porters — ABC (ATP-binding cassette) and SLC
(solute carriers) (53). The ABC transporters act as
exporter, pumping drugs out of the cells with the aid
of energy produced from the hydrolysis of ATP,
while SLT transporters mainly utilize energy stored
in ions across the membrane (54, 55). About 49 ABC
transporters have been identified and classified into
seven subfamilies: ABC1/ABCA, multidrug resis-
tance (MDR)/TAP/ABCB, MRP/ABCC, ALD/ABCD,
OABP/ABCE, GCN20/ABCF and white/ABCG (44).
Among ABC transporters, P-glycoprotein (P-gp) is
the most widely studied, expressed mainly in the
intestine, liver, kidneys, brain, and placenta. Many
substrates of P-gp (e.g. immunosuppressants, anti-
biotics and antineoplastics drugs) overlap with the
substrates of CYPs. Transcription factors (vitamin D
(VDR) and CCAAT/miRNAs) regulate P-gp expres-
sion (54).

Cancer cells usually over-express P-gp and
this has been attributed to multidrug resistance
(MDR) seen in antineoplastic chemotherapy (56).
There are 360 SLC superfamily members which are
organized into 55 SLC families. Organic anion trans-
porting proteins (OATP), organic anion, and cation
transporters (OATs and OCTs/SLCO) are the major
SLC that play vital roles in drug disposition (55, 57).

The expression and activity of drug trans-
porters are regulated by herbs/drugs. Co-admini-
stration of drugs with multiple drugs or herbal pro-
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duct may lead to inhibition or induction of the
transporters. Also, disease states may regulate the
expression of transporters with consequent modifi-
cation of drug pharmacokinetics (2).

HERB-DRUG INTERACTIONS

Herb-drug interactions (HDIs) are pharmaco-
logical or clinical responses to co-exposure to a con-
ventional drugs and herbal medicine that exceed
what is expected based on the known effects of each
agent when administered alone. The outcome of
HDIs may affect either the drug/herb pharmacoki-
netics (quantitative alteration) or pharmacodynamic

Herb-Drug
Interactions
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(qualitative alteration) (Figure 1). The pharmacoki-
netic-mediated interactions occur due to an alter-
ation in one or more processes of pharmacokinetics
(ADME). The potential outcomes of this alteration
include changes in pharmacokinetic (PK) parameters
(Cmax, Tmax, and AUC), changes in drug efficacy, and
changes in toxicity. Approximately 43% of HDI cases
were related to PK-based interactions and contrain-
dication cases arising from herb-drug combination
occurred (58, 7). HDIs do not always lead to unfavo-
rable effects. Favorable effects such as increased
efficacy or reduced toxicity have been observed, and
sometimes no effect is noticed when herbs are co-
administered with drugs (59).

Pharmacokinetic-mediated
Interactions

Pharmacodynamic-mediated
Interactions

Altered
absorption

Synergistic

Altered
distribution

Addictive

Altered
metabolism

Altered
excretion

Figure 1. Quantitative and qualitative outcome of herb-drug interactions

Mechanism of HDIs

The mechanism of HDIs is very complex due
to the presence of numerous herbs and phyto-
chemicals. Pharmacokinetic and pharmacodynamic
alterations are the major mechanistic pathways
through which HDIs occur (Figure 1). The ability of
phytochemicals in herbs to alter drug absorption,
distribution, metabolism, and excretion (ADME) is
the major mechanism underlying PK interactions
(Figure 1). Thus, HDIs arise from the modulation of

metabolizing enzymes and/or transporters that
mediate ADME of drugs in the liver, kidneys, and
intestine (60).

Metabolizing enzyme-mediated
HDIs

Modulation (inhibition or induction) of drug
metabolizing enzymes is the main mechanism of
action of the bioactive constituents in the herbs
(Figure 2). Studies have reported more CYP inhi-
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Mo Interaction
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Herb-Drug Interaction:
induction

= Y

Herb-Drug Interaction:
inhibition

=

1. Reversible
2. Irreversible

Figure 2. Mechanisms underlying metabolism-mediated HDIs

A) The drug-metabolizing enzyme interacts with the drug to produce expected metabolites in the absence of herbal
constituents. B) In the presence of herbal constituents, there is a decrease in the activity of drug metabolizing enzymes that
results in a reduction in metabolite formation. C) Interactions of herbal constituents with drug-metabolizing enzymes may
increase enzyme expression or activity, which may result in the rapid metabolism of a co-administered drug. Both events
in A and B may lead to significant herb-drug interactions, with a consequent decrease in drug efficacy or increase in drug

toxicity.

bition than induction as a mechanism of PK-based
HDIs (61). Inhibition of metabolic enzymes can
either be reversible or irreversible (Figure 2). Re-
versible inhibition occurs as competition for DMEs
(CYPs, UGTs) binding sites between the substrate
(victim drug) and the perpetrators (i.e. inhibitors).
Reversible inhibition can be further divided into
competitive, non-competitive, uncompetitive, and
mixed-type inhibition (62, 63). Irreversible inhibition
occurs when the perpetrators bind covalently to the
active site of the DMEs. For example, a co-admini-
stration of green tea leaves with ticagrelor (a P2Y12
receptor antagonist), a drug used in the management
of acute coronary syndrome, may lead to a decrease
in its bioavailability. This is due to the inhibition of
CYP3A involved in ticagrelor metabolism by tea
polyphenol extract (TPE) found in green tea leaves
(64). In another study, aqueous and methanolic ex-
tracts of Ocimum basilicum using human liver micro-
somes in vitro assays reduced the activity of CYP2B6
by less than 50% at 200 ug/mL concentrations (65).
The methanolic extracts of Ocimum basilicum strongly
inhibit the rifampicin metabolism pathway (65).

Fructus autantii, one of the herbal components of the
Chinese decoction used in the management of
COVID-19 disease (QFD; Qingfei Paidu decoction),
was found to strongly inhibit CYP3A4 that catalyzes
testosterone 63 hydroxylation in HLMs (66). Also,
the significance of phase II enzyme inhibition in PK-
based HDIs cannot be undermined; several studies
have shown the relevance of these enzymes in HDIs
(67,37, 2).

Induction-mediated interaction is of major
concern in clinical practice and drug development
due to the possibility of herbal product consumption
and multi-drug therapy. This is because enzyme
induction may lead to a decrease in the efficacy of
the co-administered drug by increasing the drug’s
elimination, lowering drug concentration, and re-
ducing the pharmacological effects. It may also lead
to an increase in reactive metabolite formation, re-
sulting in increased toxicity (68). A common mecha-
nism of DME induction is nuclear receptor (NR)-
mediated, leading to increased gene transcription,
mRNA stabilization, or active protein (69).
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The major nuclear receptor-mediators invol-
ved in metabolic enzyme induction are pregnane X
receptor (PXR) (nuclear receptor subfamily 1 group 1
member 2, NR1I2) and constitutive androstane re-
ceptor (nuclear receptor subfamily 1 group I Mem-
ber 3 protein, NR1I3). The activation of PXR in the
liver stimulates the expression of CYP3A and CYP2
(CYP2B6, CYP2C8, CYP2C9 and CYP2C19) family
members. Likewise, UGTs, GST and SULTSs families
are expressed upon the activation of PXR (62). Other
NRs involved in the regulation of genes related to
drug ADME are fatty acid peroxisome proliferator-
activated receptor (PPARa), retinoid-related orphan
receptors (RORa), bile acid-activated farnesoid X
receptor (FXR) and oxysterol activated liver X re-
ceptor (LXRa) (70); ligand-dependent transcription
factor is involved in the induction of CYP1Al and
CYP1B1 (71). The binding of perpetrators (herbs) to
any of these nuclear receptors activates it and then
binds to the xenobiotic response element (XRE) that
is located on the gene promoter region. This cascade
of events will lead to increased transcription and
translation of mRNA to proteins (67). There are
many reports of PK-based HDIs resulting from the
induction of metabolic enzymes. Thus, Hypericum
perforatum (St John's wort; SJW) extracts induced
CYP3A4 when co-administered with indinavir (anti-
retroviral drug; protease inhibitor). There was a re-
duction in the area under curve (AUC) of indinavir
by a mean of 57% in healthy volunteers (62). Like-
wise, the extract of Cordalis rhizoma, commonly used
in traditional Chinese medicine, was reported to
induce the expression of CYP2E1 and 3A1 (72).

CURRENT EXPERIMENTAL
MODELS IN PK-BASED HDIs

In the past twenty years, many studies have
been conducted to unravel the mechanism of HDIs,
especially that of enzymes-mediated PK-based HDIs
(73). Experimental models usually comprising the
combination of in vitro and in vivo studies are used to
assess HDIs with the aim of identifying pharmacoki-
netic interactions. The study design involved the
initial in vitro screening followed by in vivo (precli-
nical and clinical) studies (74, 75). Currently, fewer
studies are reported using in silico and physiologi-
cally based pharmacokinetic (PBPK) simulation
models (74, 77). In metabolic enzyme-mediated PK
based HDI models, herbs, either single or multiple
constituents, are assumed to be perpetrators (inducer
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or inhibitor), while the conventional drug is a sub-
strate (i.e. victim drug) for the DMEs (62). This is be-
cause herbs contain numerous phytochemicals and
sometimes unknown compounds which makes it dif-
ficult to analyze the concentration changes of all the
phytochemicals representing their PK properties.

In vitro metabolic models

The philosophy of ‘fail early, fail cheaply’ is
very relevant in the process of drug development
(16). In vitro models allow early screening of drugs
for possible HDIs and provide a fast, simple and
convenient route for detecting metabolic-mediated
HDIs. It also provides platform for human-based in
vitro assay which gives more accurate predictability
of human clinical outcomes than animal studies
during preclinical studies. Thus, current guidelines
on drug development recommend that in vivo stu-
dies will be required when in vitro studies provide
positive outcomes (78 - 80). Also, the results obtained
from in vitro studies are used for physiology-based
pharmacokinetic (PBPK) modeling to improve in
vitro to in vivo extrapolation of HDIs (76).

Several in vitro test systems which range from
whole cell system (e.g. intact perfused liver, primary
human hepatocytes, and transfected cell lines) to
enzyme preparations (e.g. liver microsomes (humans
or animals), cytosolic and S9 fractions) can be used
for in vitro metabolic studies. Each of these test sys-
tems has its advantages and limitations. According
to the United State Food and Drug Administration
Agency (FDA), the use of microsomes or supersomes
(human lymphoblast cells containing expression of
CYPs enzymes) is preferred and recommended for in
vitro inhibition assay and primary human hepato-
cytes are recommended for in vivo induction assay
(81, 82). However, the choice of the test system
should be based on the goal of the evaluation, in vivo
resemblance, ethical consideration, cost, and availa-
bility (16).

Almost all the in vitro models reviewed either
for induction or inhibition assay followed this basic
principle: the ability of herbs or their constituents to
inhibit or induce DMEs is determined by treating
cells, microsomes, superstores, or hepatocytes with
known substrate for any of the DMEs in the absence
or presence of herbal extracts or known potent in-
hibitors of the enzyme. Enzyme activities are deter-
mined by monitoring the changes in metabolite for-
mation. However, for induction assay detection of
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mRNA levels using real-time polymerase chain re-
action (RT-PCR) and the protein expression assay
using Western blot are recommended in addition to
the changes in enzyme activities (83). The most
common analytical methods used to quantify me-
tabolites formed in the in vitro assay are liquid chro-
matography coupled with tandem mass spectro-
metry (LC-MS/MS) or a fluorescence assay. Recently,
molecular imprinting polymers (MIP) have drawn
the interest of researchers in bioanalytical methods
(84). There is no report on its application in an in
vitro experimental model for herb-drug interaction
studies.

In vivo metabolic models

The in vitro model demonstrates only one as-
pect of the whole PK, thus, in vivo model provides
more multi-factorial results and the combined effects
of ADME. Irrespective of the thoroughness of in vitro
models, in vivo studies are required to measure drug
exposure and to determine DDI/HDIs. Preclinical
animal studies can be used to predict HDIs, but they
have poor extrapolative value to humans. This is due
to interspecies variations and the use of dosage re-
gimens that are not applicable in humans (85). In
addition, since data on herbs absorption is limited, it
is therefore difficult to determine if the phytoche-
micals will be absorbed enough to affect the PK
parameters of the co-administered drugs. While the
common laboratory animal for HDI study is the rat,
the advent or development of gene editing techno-
logy, animal models of special ADME genes are used
to study the mechanisms of HDIs (86-89). The
current trend to improve the interspecies variation is
the use of engineered/humanized mouse models
(88). For example, humanized CYP2C19 mice for
drug metabolism, humanized CYP3A4, and huma-
nized CYP2D6 mice for drug interactions were con-
structed (90-92). The most recent is the novel clus-
tered regularly interspaced short palindromic repeat
(CRISPR/CRISPR-9) associated Cas 9-based animal
model for the DMPK study (85, 87, 93).

This genetic editing technology has improved
the extrapolative values of data from animal models,
however, the challenges of the complexity of ADME
and the involvement of multiple human organs in
herbs/drug metabolism persist (84). Hence, clinical
studies are the most reliable model to investigate
PK-based HDIs. In designing and conducting clinical
pharmacokinetics HDI studies, the following must

be considered: experimental design, PK parameters,
herbal product quality, and appropriate dosage (94).
Typically, a subject (usually healthy volunteers) will
be administered a single dose of a test or “probe”
drug or cocktail of drugs that are substrates for dif-
ferent DMEs/transporters (e.g. orally administered
dolutegravir is a substrate for UGT1Al and
CYP3A4) and followed by PK assessments to deter-
mine the baseline DMEs activities (95). This is
usually followed by daily multiple administrations
of the test herbs extracts/products over a period
usually 2 weeks to 1 month and the test drugs will
be administered again. The pre-and post-herbal ex-
tracts administration data will be compared to
providing a probability of an HDI (84). In vitro and in
vivo animal studies are useful in determining the
potential of herbs to cause HDIs, but only human
studies (in vivo) can establish clinically relevant HDIs
(92).

In situ model

It is also known as the organ perfusion model;
this experimental model almost mimics in vivo drug
ADME (96). The liver perfusion model is the most
studied of all the different organ perfusion models.
Unlike in the in vitro test systems (hepatocytes and
sub-cellular), the liver structure and architecture are
maintained and all the cell populations (e.g. Kupffer
cells), including transporters, are preserved. This fea-
ture makes it very close to the in vivo systems. This
model requires minimal organ preparation therefore
reducing organ damage. One of these model
limitations is the very short cell viability due to poor
cell oxygenation and nutrients. Other limitations are
scarce human liver source, poor reproducibility, and
low thoroughput (84).

Ex vivo metabolic model

In this model, drug and/or herbal extracts are
administered to animals followed by organ harvest
(e.g. liver to prepare liver microsomes) and it is used
to determine changes in activities or expression of
DMEs. This model has been reported for HDIs
studies (97), however, it is commonly used in in-
duction and toxicity studies. The liver is often stu-
died for the effect of herbs co-administered with
conventional drugs on DMEs activities and/or levels
because it is the organ that is mostly exposed to
drugs and other xenobiotics. These changes in DME
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expression or activities could in turn explain the
changes in drug PK or be linked to the toxicities (95).

In silico prediction

This model is becoming popular because it is
less expensive and not time-consuming unlike the
other models. It is also known as dry laboratory be-
cause the experiment is largely done on computers.

4 ™\
In vitro metabolic models:

The use of cryopreserved
HLMs and recombinant DMEs
has improved the reliability of

data from this model.

. /

In vitro metabolic
models:

It provides more
multifactorial results
with combined effects
of ADME. The use of
humanised mouse has

Current
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Most often it is done early by the researcher because
its outcome usually determines if there is a need to
proceed to the in vivo study. Although this method
and the others have their limitations, it is better to
combine these methods to have a holistic view of
HDIs (Figure 3). In silico method is com-monly used
to study the interactions of bioactive components of
the medicinal plant and cytochrome P450 (98, 99).
Several free online tools are available (100).

4 I
Mathematical modeling:
Physiological based
pharmacokinetic (PBPK) has
help to improve the
challenges faced in
extrapolating preclinical data.

. /

f ™\
In silico prediction:

It is not time
consuming and less
expensive. It is usually
combine with other

reduced the issue of experiment L experiment model. )
interspecies variation. models in HDIs
J study

Figure 3. Current tools of herb-drug interactions study

CURRENT TRENDS OF RESEARCH
ON HDIs

Herbal products are commonly used for treat-
ment of some ailments and as dietary supplements
(101). Co-administration with conventional drugs
may lead to clinically relevant HDIs resulting in
either increased/decreased efficacy or toxicities.
Drugs such as digoxin with narrow therapeutic win-
dow are usually associated with HDIs (57). HDIs
with both pharmacokinetics and pharmacodynamic
consequences were reported (102).

Reported cases of HDIs are largely based on in
vitro and in vivo animal studies that do not have sig-
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nificant clinical relevance (103, 7, 104). One of the
challenges in HDIs research is the inconsistencies in
preclinical data and low clinical relevance of results
reported from preclinical studies. This is due to poor
standardization of herbal products and interspecies
variation in DMEs especially between rodents and
humans (5). To improve on the challenges faced in
extrapolating preclinical (in vitro and in vivo animal
studies) data, PBPK mathematical simulation were
developed to predict HDIs (105, 67). For example,
PBPK mathematical simulation was used to predict
HDIs between tacrolimus and  Schisandra
sphenanthera extracts mediated by CYP3A4 inhibition
(106). However, limited human PK data of herbs
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phytochemicals restrict the application of PBPK
model in HDIs studies (76). Thus, very well-de-
signed clinical studies are required to evaluate the
efficacy and safety of the concurrent use of herbs and
conventional drug.

CLINICALLY RELEVANT HERB-
DRUG INTERACTION STUDIES

Herb-drug pharmacokinetic interactions be-
come clinically relevant when significant changes oc-
cur in the pharmacokinetic parameters of the co-
administered conventional drug. These parameters,
which are directly related to the efficacy and toxicity
of the drug, include the area under the curve (AUC),
maximum concentration (Cmax) or time to reach ma-
ximum concentration (Tmax). Herb-drug pharmacoki-
netic interactions associated with high risks and
severe adverse reactions may be experienced with
drugs that have narrow therapeutic indices (e.g.
digoxin, phenytoin, and warfarin) (107, 108). Many
of the herb-drug pharmacokinetic interactions are
difficult to anticipate in clinical practice as they often
occur through multiple mechanisms and are usually
dependent on many factors. In some cases, insuf-
ficient clinical evidence exists to confirm pharmaco-
kinetic effects of herbs on drug molecules that were
observed during in vitro and in vivo animal studies.

Some HDIs have been reported in in vitro and
in vivo studies as well as with clinical cases. In this
section, some empirical examples of PK-based in-
fluence of herbal drugs on conventional medicines
with significant clinical relevance are highlighted as
follow:

1. Allium sativum L. (Alliaceae) bulb is com-
monly called garlic (local name: Ayu).

Ethnomedicinally, A. sativum is used for fla-
tulence, intestinal worms, dysentery, diabetes, and
cough (109 - 111). It has been scientifically validated
as an antimicrobial, anti-hypertensive, hypolipi-
daemic, and immune booster (112). It contains
sulphur-containing compounds such as allicin, alliin,
and flavonoids e.g. quercetin, rutin, as well as ter-
penes, saponins etc.

Garlic was reported to have no effect on the
PK of alprazolam, caffeine, ciclosporin, debriso-
quine, paracetamol, simvastatin, ritonavir, docetaxel,
and midazolam (113, 114). However, it decreased the
AUC and Cmax of saquinavir, an antiviral drug, and
chlorzoxazone as well as warfarin (101, 113, 115).

2. Actaea racemosa (Ranunculaceae), commonly
called Black cohosh, is a herbal medication for post-
menopausal symptoms. It did not affect the PK of
midazolam, caffeine, and digoxin. However, it
showed a weak inhibition of CYP2D6 resulting in an
increased urinary ratio of debrisoquine (116).

3. The roots of Echinacea purpurea, and
Echinacea pallida are commonly called purple root
and pale coneflower root, respectively. They are
used as adjuvant therapy and prophylaxis of re-
current infections of the upper respiratory tract such
as the common cold and influenza (117). They pos-
sess a similar phytochemical profile of which alkyl
amides, implicated in the HDIs, are the major com-
pounds.

Echinacea was reported not to affect the phar-
macokinetics of darunavir-ritonavir, although there
was slight decrease with this drug when co-admi-
nistered with Echinacea purpurea (118).

4. Gingko biloba (Gingkoaceae) is commonly
known as gingko. It is used for cerebral insufficiency
and memory enhancement (119 - 121). Gingko con-
tains flavonoids such as quercetin, kaempferol,
isorhamnetin, and terpene trilactones (e.g. Ginkgo
bilobalides A, B and C; and bilobalide) (119, 122).

Gingko showed no PK effect on bupropion,
caffeine, chlorzoxazone, clopidogrel, debrisoquine,
diazepam, digoxin, lopinavir, metformin, and nife-
dipine (123). However, gingko altered the plasma
concentrations of omeprazole and alprazolam by in-
duction of CYP 2C19 and CYP3A4, respectively (124,
125). Also, induction of CYP2C19 is also responsible
for the life-threatening seizures reported in a patient
on valproic acid (126). Therefore, the consumption of
gingko should be monitored or avoided in patients
receiving drugs metabolized by CYP2C19, while the
effect of gingko on CYP3A4 or P-gp requires
additional study (127).

5. Piper methysticum G. Forst root (Piperaceae)
commonly known as kava kava is used in the treat-
ment of depression, anxiety, insomnia, and rest-
lessness. The bioactive compounds include kavalac-
tones including methysticin and dihdryomethysticin
(128-130).

Kava kava has no significant effect on the PK of
midazolam, digoxin, debrisoquine, caffeine, how-
ever, by possible additive effect on GABA receptors,
it cases disorientation and lethargy with alprazolam
(110, 131). By the inhibition of CYP2E1, it causes a
decrease in serum ratios of 6-hydroxychlorzoxazone
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to chlorzoxazone by 40%, thus, it must not be co-
administered with chlorzoxane (12, 132).

6. Silybum marianum (Compositae/Asteraceae)
with synonym as Carduus marianus, is commonly
called Milk-thistle.

Ethnomedicinally, it is used in some parts of
Europe as an effective liver remedy. This claim has
been scientifically justified as several flavonolignans
have been isolated from the leaf and fruit (133). The
major bioactive constituent from the seed is sily-
marin which is composed of three isomer flavo-
nolignans (silybin, silydianin, and silychristin). Sily-
bin has the most pronounced biological activity, and
it is the major component (50-70%) of silymarin
(134).

S. marianum caused an induction of intestinal
P-gp and CYP3A4 leading to the increased clearance
and decreased half-life, Cmax and AUC of metro-
nidazole (135, 136). Also, by inhibition of P-gp, it led
to an increased Cmax and AUC of talinolol (137, 138).
Its inhibition of CYP2C9 led to increased AUC and
decreased metabolic ration of losartan (135). How-
ever, milk-thistle had no effect on the PK of caffeine,
debrisoquine, midazolam, nifedipine, ranitidine,
digoxin, tolbutamide, dextromethorphan, and
indinavir (137, 131, 135, 139, 140, 141).

7. Panax ginseng (Araliaceae) commonly called
ginseng, has its root in high use in traditional
Chinese medicine. Its major active components are
dammarane-type saponins named ginsenosides by
Japanese scientists and panaxosides by Russian sci-
entists (142). However, the two series of chemical
constituents are not completely identical, especially
about the sugar moieties. Ginseng contains a mixture
of both steroidal and pentacyclic triterpenoids sa-
ponins (143). These saponins are implicated in HDIs
involving ginseng. Ginseng has various pharmaco-
logical activities, including effects on the central
nervous system, antineoplastic effects, and immune-
modulatory effects. In vitro studies have shown that
ginseng can inhibit CYP2C9, CYP2C19, CYP2D6 and
CYP3A4 (144). In rats, P. ginseng (150 mg/kg/day) for
14 days decreased the AUC from 0 to 12 hours of
oral fexofenadine, decreased the Cmax and signi-
ficantly reduced the ratios of brain to plasma concen-
trations (145). Available clinical evidence shows that
the probability of an HDI involving ginseng is low
(146).

8. Hypericum perforatum L. (Hypericaceae),
known as St John’s Wort (SJW), is the most extensi-
vely investigated herbal medicine involved in HDIs.
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Ethnomedicinally, it is used as antidepressant, and
this has been scientifically validated as useful in
mild to moderate depression (147, 148). It contains
bioactive constituents such as flavonoids including
quercitrin, quercetin, naphthodianthrones, and hy-
pericin (149, 150).

In vitro studies have suggested that SJW ex-
tracts can inhibit CYP3A4, CYP2C9, CYP1A2,
CYP2D6 and CYP2C19 (151). Individual constituents
of SJW have different inhibitory effects on CYP
isoenzymes, for example, hyperforin is a non-compe-
titive inhibitor of CYPs, while quercetin and some
other flavonoids are more selective for CYP1B1.
Hypericin is a potent inhibitor of many CYP en-
Zymes.

SJW has the potential for both PK and PD in-
teractions, and clinically, it depends on the duration,
dosage, and therapeutic range. As found in the case
of oral contraceptives failure, it was reported that
concurrent use of SJW with oral contraceptive pills
significantly increases the clearance of these pills
(150, 152). Since the potential of HDIs with SJW is
high, patients should be discouraged from taking
SJW on prescription (126, 153).

In Nigeria, the following cases of HDIs have
been reported both in in vitro and clinical cases, and
quite a few in animal studies. For this review, na-
tural products taken as beverage or foods are ex-
cluded, and only plants or herbal products taken for
medicinal purposes are included.

1. In an in vitro study, quinine was adsorbed
onto Garcinia kola, and it resulted in decreased
quinine availability (153). In this study, concurrent
oral administration of quinine and G. kola seed
resulted in a decrease in the Tmax of quinine ,which
led to the reduction in the Cmax, exposure of quinine
and its major metabolite (3-hydroxyquinine). The
absorption of quinine was delayed as evidenced
from an increase in the Tmax of quinine. A significant
herb-drug interaction was reported in this study;
caution must be taken by individual on quinine oral
therapy and Garcinia kola (154).

2. Ciklavit, a liquid herbal formulation made
from the extracts of Cajanus cajan seeds, used for the
management of sickle cell anemia disease in Nigeria,
significantly decreased the dissolution of proguanil
tablets in vitro (155). However, the animal or clinical
studies on this observation have not been reported.

3. Manix, made from the extracts Asparagus
racemosus, Tribulus terrestris, Tinospora cordifolia,
Semecarpus anacardium, Pueraria tuberose, Plumbago
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zeylanica, Cinnamomum zeylanicum, Elettaria
cardamomum, Cinnamomum tamala, Dioscorea bulbifera,
and Sesamum indicum used in the management of
male infertility in Nigeria, was reported to have ef-
fect on the pharmacokinetics of perfloxacin, an anti-
biotic, in the rat. Concurrent usage of perfloxacin
with this herbal product significantly reduced the
Cimax, Tmax, and AUC of this antibiotic (156).

4. The leaf of Moringa oleifera (Moringaceae) is
taken as food and as medicine in Nigeria. In rat sys-
tem, it was observed that it altered the PK of
amodiaquine by reducing the Cmax but increasing the
AUC on coadministration and pre-treatment with
Moringa. This implied PK interaction with effect on
absorption (157). In another study in human volunte-
ers, the concurrent administration of the Moringa
oleifera leaf extract resulted in a significant decrease
in the Cmax of amodiaquine, an antimalarial drug
(158).

5. A study conducted in mice to investigate
MAMA Decoction (MD), an antimalarial product
prepared from the leaves of Mangifera indica L.,
Alstonia boonei De Wild, Morinda lucida Benth and
Azadirachta indica, revealed an increase in the Cmax
of amodiaquine with the concurrent administration
of MD. There was an increase in the exposure and
half-life of amodiaquine and its metabolite, desethyl-
amodiaquine (159).

6. Cola nitida commonly known as kolanut is
commonly chewed in Nigeria. The Cola nitida was
shown to have implications on the PK of halo-
fantrine in healthy volunteers. There was a signifi-
cant decrease in the plasma concentrations of halo-
fantrine and its active metabolite desbutylhalo-
fantrine when kolanut was simultaneously used
with halofantrine. Thus, caution must be taken
whenever halofantrine is used along with caffeine-
containing substances such as kolanut (156).

7. In addition, the effect of the administration
aqueous
Azadirachta indica was investigated in rabbits. This
study revealed a significant decrease in serum con-
centration, slower absorption, elimination and pro-

of chloroquine and leaf extract of

longed half-life of chloroquine. Other pharmacoki-
netic parameters such as area under the curve, Crmax,
absorption rate and volume of distribution were sig-
nificantly reduced when chloroquine was co-admi-
nistered with A. indica (161).

CONCLUSION

Substantial progress has been made in the
methods used to evaluate PK-based HDIs, however,
the progress is incomparable to the achievements
made in DDIs studies. This is not far from the chal-
lenges of extrapolative values and inconsistencies of
outcome of most of the HDIs preclinical studies.
However, there is still demand for well-designed
preclinical and clinical studies that will improve
understanding of the underlying mechanisms of
HDIs. A lot needs to be done in communicating
clinically relevant findings to provide well-informed
clinical decision with respect to herb-drug combi-
nation. It is important to understand the complexity
of herbs and phytochemicals, various intrinsic fac-
tors present in respective experimental models, and
diverse factors considered in study designs to im-
prove the evaluation methodologies and interpre-
tations of HDIs.

Nevertheless, efforts have been made to im-
prove the extrapolation of research findings during
preclinical (in vitro and in vivo animal studies) HDI
studies. Such attempted efforts include the gene-
tically modified animals that have been transfected
with human genes to express the same enzymes as
humans (e.g. humanized mice) and PBPK simulation
of both in vitro and in vivo preclinical data to predict
clinically relevant HDIs. This review adds credence
to the existing knowledge of HDI and encourages
that more preclinical and
conducted to further ascertain
complexities of the interactions between herbs com-
ponents and drugs co-administered. While the ad-
ditive or synergistic interaction could be exploited
for further development, the antagonistic should be

clinical studies be
the associated

ultimately discouraged. As the mechanism of meta-
bolism of herbal supplements and the PK of HDI
remains obscured, users and herbs/drug administra-
tors must take caution to minimize the incidences of
fatalities.
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SAZETAK

Uvod/Cilj. Biljke su vitalni obnovljivi izvor koji se kroz istoriju koristio u medicinske svrhe; veci deo
globalne populacije i dalje zavisi od njih i koristi ih za ocuvanje zdravlja. Sve veca popularnost biljnih
suplemenata izazvala je ociglednu zabrinutost zbog ukupne bezbednosti i potencijalne interakcije sa drugim
lekovima in situ. Cilj ovog rada bio je da se podstaknu buduca istrazivanja o interakcijama biljaka i lekova,
kao i 0o mehanizmima interakcija kako bi se razumele njihove posledice.

Metode. Pregled je sproveden sistematskom pretragom relevantne literature iz baza podataka Google
Scholar, Science Direct, Mendelei, Scopus i PubMed. U obzir su uzeti radovi napisani na engleskom jeziku.
Pokazalo se da mnogi biljni proizvodi stupaju u reakciju sa najces¢e primenjivanim lekovima. Mehanizam
inhibicije-indukcije izaziva lancane reakcije koje cesto dovode do smanjene bioraspolozivosti lekova,
toksicnosti ili nezeljenih sporednih efekata. Pojedini biljni fitokonstituenti navodno se vezuju za enzime
CIP2C9, CYP2C19, CIP2E1 i CIP3A1 privremeno ili trajno.

Zakljucak. Pokazalo se da mnogi biljni proizvodi stupaju u reakciju sa najces¢e primenjivanim lekovima.
Mehanizam inhibicije-indukcije izaziva lanc¢ane reakcije koje c¢esto dovode do smanjene bioraspolozivosti
lekova, toksicnosti ili nezeljenih sporednih efekata. Pojedini biljni fitokonstituenti navodno se vezuju za
enzime CIP2C9, CYP2C19, CIP2E1 i CIP3A1 privremeno ili trajno. U zakljucku ovog rada ukazano je na
neophodnost rutinskog i redovnog obavestavanja i lekara i bolesnika o opasnostima poput smanjene
efikasnosti i povecane toksicnosti povezanim sa interakcijama biljaka i lekova. Potrebno je da se osobe koje
koriste biljne suplemete informiSu o njihovoj odgovarajucoj upotrebi kako bi se izbegao rizik od nezeljenih
interakcija lekova u toku istovremene primene ili u kombinovanim terapijama. S obzirom na to da se u
interakcijama izmedu biljaka i lekova mogu uociti sinergisticki i antagonisticki efekti, treba sprovesti
naknadne pretklinicke i klinicke empirijske studije da bi se naglasio mehanizam i obim ovih interakcija.

Kljucne reci: interakcija izmedu biljaka i lekova, enzimi, farmakokineticke interakcije, tradicionalna
medicina, citohrom P450
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