SummaryCombating Staphylococcus aureus (S. aureus) infections using antibacterial drugs is actually an ongoing effort to overcome resistance mechanism of this microorganism. In this paper, we discussed (1) the mechanisms of resistance to some of the most commonly used antimicrobial agents in the treatment of S. aureus: methicillin, vancomicyn and quinolones. In addition, (2) efflux pump mechanisms involved in maintaining homeostasis in the presence of compounds that inhibit S. aureus growth and reproduction, as well as mechanisms of resistance to a number of antibiotics, have been reviewed.
References
1.
The structure of β-lactamases. Philosophical Transactions of the Royal Society of London B, Biological Sciences. 1980;289(1036):321–31.
2.
Kreiswirth B, Kornblum J, Arbeit RD, Eisner W, Maslow JN, McGeer A, et al. Evidence for a Clonal Origin of Methicillin Resistance in Staphylococcus aureus. Science. 1993;259(5092):227–30.
3.
Poole K. Efflux-mediated antimicrobial resistance. Journal of Antimicrobial Chemotherapy. 2005;56(1):20–51.
4.
Hiramatsu K. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. Journal of Antimicrobial Chemotherapy. 1997;40(1):135–6.
5.
Fluman N, Ryan CM, Whitelegge JP, Bibi E. Dissection of Mechanistic Principles of a Secondary Multidrug Efflux Protein. Molecular Cell. 2012;47(5):777–87.
6.
Malachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus aureus. Cellular and Molecular Life Sciences. 2010;67(18):3057–71.
7.
Poole K. Outer Membranes and Efflux: The Path to Multidrug Resistance in Gram- Negative Bacteria. Current Pharmaceutical Biotechnology. 2002;3(2):77–98.
8.
Putman M, van Veen HW, Konings WN. Molecular Properties of Bacterial Multidrug Transporters. Microbiology and Molecular Biology Reviews. 2000;64(4):672–93.
9.
Archer GL, Niemeyer DM. Origin and evolution of DNA associated with resistance to methicillin in staphylococci. Trends in Microbiology. 1994;2(10):343–7.
10.
Berger-Bächi B. Expression of resistance to methicillin. Trends in Microbiology. 1994;2(10):389–93.
11.
Hanaki H, Labischinski H, Inaba Y, Kondo N, Murakami H, Hiramatsu K. Increase in glutamine-non-amidated muropeptides in the peptidoglycan of vancomycin-resistant Staphylococcus aureus strain Mu50. Journal of Antimicrobial Chemotherapy. 1998;42(3):315–20.
12.
Ghuysen JM. Molecular structures of penicillin-binding proteins and β-lactamases. Trends in Microbiology. 1994;2(10):372–80.
13.
Lowy FD. Staphylococcus aureusInfections. New England Journal of Medicine. 1998;339(8):520–32.
14.
Drawz SM, Bonomo RA. Three Decades of β-Lactamase Inhibitors. Clinical Microbiology Reviews. 2010;23(1):160–201.
15.
Cohen ML. Epidemiology of Drug Resistance: Implications for a Post—Antimicrobial Era. Science. 1992;257(5073):1050–5.
16.
Bush LM, Calmon J, Johnson CC. NEWER PENICILLINS AND BETA-LACTAMASE INHIBITORS. Infectious Disease Clinics of North America. 1995;9(3):653–86.
17.
Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y, Hori S, et al. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. The Lancet. 1997;350(9092):1670–3.
18.
Rubtsova MYu, Ulyashova MM, Edelstein MV, Egorov AM. Oligonucleotide microarrays with horseradish peroxidase-based detection for the identification of extended-spectrum β-lactamases. Biosensors and Bioelectronics. 2010;26(4):1252–60.
19.
Hiramatsu K, Cui L, Kuroda M, Ito T. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends in Microbiology. 2001;9(10):486–93.
20.
Walsh TR, Howe RA. The Prevalence and Mechanisms of Vancomycin Resistance in Staphylococcus Aureus. Annual Review of Microbiology. 2002;56(1):657–75.
21.
Høiby N, Jarløv JO, Kemp M, Tvede M, Bangsborg JM, Kjerulf A, et al. Excretion of ciprofloxacin in sweat and multiresistant Staphylococcus epidermidis. The Lancet. 1997;349(9046):167–9.
22.
Zhang HZ, Hackbarth CJ, Chansky KM, Chambers HF. A Proteolytic Transmembrane Signaling Pathway and Resistance to β-Lactams in Staphylococci. Science. 2001;291(5510):1962–5.
23.
Bradford PA. Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clinical Microbiology Reviews. 2001;14(4):933–51.
24.
Gregory PD, Lewis RA, Curnock SP, Dyke KGH. Studies of the repressor (BlaI) of β‐lactamase synthesis in Staphylococcus aureus. Molecular Microbiology. 1997;24(5):1025–37.
25.
Archer GL, Bosilevac JM. Signaling Antibiotic Resistance in Staphylococci. Science. 2001;291(5510):1915–6.
26.
Andersen J, He GX, Kakarla P, KC R, Kumar S, Lakra W, et al. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens. International Journal of Environmental Research and Public Health. 12(2):1487–547.
27.
Sieradzki K, Roberts RB, Haber SW, Tomasz A. The Development of Vancomycin Resistance in a Patient with Methicillin-ResistantStaphylococcus aureusInfection. New England Journal of Medicine. 1999;340(7):517–23.
28.
Park IS, Lin CH, Walsh CT. Bacterial resistance to vancomycin: Overproduction, purification, and characterization of VanC2 from Enterococcus casseliflavus as a <scp>d</scp> -Ala- <scp>d</scp> -Ser ligase. Proceedings of the National Academy of Sciences. 1997;94(19):10040–4.
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.