Bone tumors, including benign and malignant lesions, are not metastatic; however, they may appear in any part of the body skeleton. Distal femur and proximal tibia (around the knee joint) are the most prevalent sites. Most benign bone tumors are cartilaginous tumors, known as osteochondromas. Based on the reports, benign bone tumors are more frequent than primary malignant ones. Malignant bone tumor is another type of bone tumor, which usually occurs within the first years of life. As a result, it can considerably affect the lives of patients and their families. These tumors consist of osteosarcoma, chondrosarcoma, and Ewing's sarcoma. This article discusses the epidemiology, characteristics, and treatment of the most important types of benign and malignant bone tumors. These data will be useful to the physicians and other health workers to better understand the conditions of bone tumors and their management.
References
1.
Palmer FJ, Blum PW. Osteochondroma with spinal cord compression. Journal of Neurosurgery. 1980;52(6):842–5.
2.
van der Heijden L, Sander Dijkstra PD, Campanacci DA, Gibbons CLMH, van de Sande MAJ. Giant Cell Tumor With Pathologic Fracture: Should We Curette or Resect? Clinical Orthopaedics & Related Research. 2013;471(3):820–9.
3.
Levine E, De Smet A, Neff, Martin N. Scintigraphic evaluation of giant cell tumor of bone. American Journal of Roentgenology. 1984;143(2):343–8.
4.
Szendröi M. GIANT-CELL TUMOUR OF BONE. The Journal of Bone and Joint Surgery British volume. 2004;86-B(1):5–12.
5.
Chakarun CJ, Forrester DM, Gottsegen CJ, Patel DB, White EA, Matcuk GR. Giant Cell Tumor of Bone: Review, Mimics, and New Developments in Treatment. RadioGraphics. 2013;33(1):197–211.
6.
Turcotte RE. Giant Cell Tumor of Bone. Orthopedic Clinics of North America. 2006;37(1):35–51.
7.
Herget GW, Kontny U, Saueressig U, Baumhoer D, Hauschild O, Elger T, et al. Osteochondrom und multiple Osteochondrome. Der Radiologe. 2013;53(12):1125–36.
8.
Woertler K, Lindner N, Gosheger G, Brinkschmidt C, Heindel W. Osteochondroma: MR imaging of tumor-related complications. European Radiology. 2000;10(5):832–40.
9.
Kenney PJ, Gilula LA, Murphy WA. The use of computed tomography to distinguish osteochondroma and chondrosarcoma. Radiology. 1981;139(1):129–37.
10.
Mittal B, Manohar K, Bhattacharya A, Sen R. Recurrent giant cell tumor of foot detected by F18-FDG PET/CT. Indian Journal of Nuclear Medicine. 2012;27(4):262.
11.
Hakim DN, Pelly T, Kulendran M, Caris JA. Benign tumours of the bone: A review. Journal of Bone Oncology. 2015;4(2):37–41.
12.
Bacci G, Forni C, Longhi A, Ferrari S, Donati D, De Paolis M, et al. Long-term outcome for patients with non-metastatic Ewing’s sarcoma treated with adjuvant and neoadjuvant chemotherapies. 402 patients treated at Rizzoli between 1972 and 1992. European Journal of Cancer. 2004;40(1):73–83.
13.
Bacci G, Longhi A, Briccoli A, Bertoni F, Versari M, Picci P. The role of surgical margins in treatment of Ewing’s sarcoma family tumors: Experience of a single institution with 512 patients treated with adjuvant and neoadjuvant chemotherapy. International Journal of Radiation Oncology*Biology*Physics. 2006;65(3):766–72.
14.
Picci P, Rougraff BT, Bacci G, Neff JR, Sangiorgi L, Cazzola A, et al. Prognostic significance of histopathologic response to chemotherapy in nonmetastatic Ewing’s sarcoma of the extremities. Journal of Clinical Oncology. 1993;11(9):1763–9.
15.
Grier HE, Krailo MD, Tarbell NJ, Link MP, Fryer CJH, Pritchard DJ, et al. Addition of Ifosfamide and Etoposide to Standard Chemotherapy for Ewing’s Sarcoma and Primitive Neuroectodermal Tumor of Bone. New England Journal of Medicine. 2003;348(8):694–701.
16.
Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O. Mesenchymal Stem Cell Features of Ewing Tumors. Cancer Cell. 2007;11(5):421–9.
17.
Kovar H. Ewingʼs sarcoma and peripheral primitive neuroectodermal tumors after their genetic union. Current Opinion in Oncology. 1998;10(4):334–42.
18.
Taylor C, Patel K, Jones T, Kiely F, De Stavola B, Sheer D. Diagnosis of Ewing’s sarcoma and peripheral neuroectodermal tumour based on the detection of t(11;22) using fluorescence in situ hybridisation. British Journal of Cancer. 1993;67(1):128–33.
19.
Davis NA, Dooley BJ, Bardsley A. Benign Osteoblastoma. Australian and New Zealand Journal of Surgery. 1976;46(1):37–43.
20.
Costa E, P P, L F. Clinical implications, diagnosis, and treatment of a giant frontoethmoid osteoma. Gen Dent. 2018;66(5).
21.
Abdel Tawab HM, Kumar V R, Tabook SMS. Osteoma Presenting as a Painless Solitary Mastoid Swelling. Case Reports in Otolaryngology. 2015;2015:1–3.
22.
Sayan NB, Üçok C, Karasu HA, Günhan Ö. Peripheral osteoma of the oral and maxillofacial region: A study of 35 new cases. Journal of Oral and Maxillofacial Surgery. 2002;60(11):1299–301.
23.
SILVA BSF, BUENO MR, YAMAMOTO-SILVA FP, GOMEZ RS, PETERS OA, ESTRELA C. Differential diagnosis and clinical management of periapical radiopaque/hyperdense jaw lesions. Brazilian Oral Research. 2017;31(0).
24.
Hagiwara A, Nagai N, Ogawa Y, Suzuki M. Osteoma of the Pharynx That Developed from the Hyoid Bone. Case Reports in Otolaryngology. 2014;2014:1–4.
25.
Inside front cover. Lab on a Chip. 2010;10(2):134.
26.
Scehajowicz F, Lemos C. Osteoid Osteoma and Osteoblastoma:Closely Related Entities of Osteoblastic Derivation. Acta Orthopaedica Scandinavica. 1970;41(3):272–91.
27.
Greenspan A. Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma. Skeletal Radiology. 1993;22(7).
28.
Lessnick SL, Dacwag CS, Golub TR. The Ewing’s sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts. Cancer Cell. 2002;1(4):393–401.
29.
Caufourier C, Leprovost N, Guillou-Jamard MR, Compère JF, Bénateau H. Tumeurs bénignes ostéoformatrices du massif craniofacial. Revue de Stomatologie et de Chirurgie Maxillo-faciale. 2009;110(4):202–8.
30.
Anania P, Fiaschi P, Merciadri P, Piol N, Ravetti JL, Zona G, et al. Case of Spinal Osteoblastoma in Elderly: Is It Really a Young Patient’s Disease? World Neurosurgery. 2018;112:243–6.
31.
Chawla S, Henshaw R, Seeger L, Choy E, Blay JY, Ferrari S, et al. Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: interim analysis of an open-label, parallel-group, phase 2 study. The Lancet Oncology. 2013;14(9):901–8.
32.
Malawer MM, Bickels J, Meller I, Buch RG, Henshaw RM, Kollender Y. Cryosurgery in the Treatment of Giant Cell Tumor. Clinical Orthopaedics and Related Research. 1999;359:176–88.
33.
Zuo D, Zheng L, Sun W, Fu D, Hua Y, Cai Z. Contemporary adjuvant polymethyl methacrylate cementation optimally limits recurrence in primary giant cell tumor of bone patients compared to bone grafting: a systematic review and meta-analysis. World Journal of Surgical Oncology. 2013;11(1).
34.
Yang T, Zheng XF, Lin X, Yin QS. Postoperative irrigation with bisphosphonates may reduce the recurrence of giant cell tumor of bone. Medical Hypotheses. 2013;81(5):851–2.
35.
Zhen W, Yaotian H, Songjian L, Ge L, Qingliang W. Giant-cell tumour of bone. The Journal of Bone and Joint Surgery British volume. 2004;86-B(2):212–6.
36.
Jaffe N. Osteosarcoma: Review of the Past, Impact on the Future. The American Experience. Cancer Treatment and Research. 2009. p. 239–62.
37.
Ragland BD, Bell WC, Lopez RR, Siegal GP. Cytogenetics and Molecular Biology of Osteosarcoma. Laboratory Investigation. 2002;82(4):365–73.
38.
Ferrari S, Smeland S, Mercuri M, Bertoni F, Longhi A, Ruggieri P, et al. Neoadjuvant Chemotherapy With High-Dose Ifosfamide, High-Dose Methotrexate, Cisplatin, and Doxorubicin for Patients With Localized Osteosarcoma of the Extremity: A Joint Study by the Italian and Scandinavian Sarcoma Groups. Journal of Clinical Oncology. 2005;23(34):8845–52.
39.
Jaffe N, Carrasco H, Raymond K, Ayala A, Eftekhari F. Can cure in patients with osteosarcoma be achieved exclusively with chemotherapy and abrogation of surgery? Cancer. 2002;95(10):2202–10.
40.
Stiewe T, Stanelle J, Theseling CC, Pollmeier B, Beitzinger M, Pützer BM. Inactivation of Retinoblastoma (RB) Tumor Suppressor by Oncogenic Isoforms of the p53 Family Member p73. Journal of Biological Chemistry. 2003;278(16):14230–6.
41.
Lee EYHP, Muller WJ. Oncogenes and Tumor Suppressor Genes. Cold Spring Harbor Perspectives in Biology. 2010;2(10):a003236–a003236.
42.
Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Cancer Genetics and Cytogenetics. 2003;140(1):1–12.
43.
Patel AA, Ramanathan R, Kuban J, Willis MH. Imaging Findings and Evaluation of Metabolic Bone Disease. Advances in Radiology. 2015;2015:1–21.
44.
Chi SN, Conklin LS, Qin J, Meyers PA, Huvos AG, Healey JH, et al. The patterns of relapse in osteosarcoma: The memorial Sloan‐Kettering experience. Pediatric Blood & Cancer. 2004;42(1):46–51.
45.
Colding-Rasmussen T, Thorn AP, Horstmann P, Rechnitzer C, Hjalgrim LL, Krarup-Hansen A, et al. Survival and prognostic factors at time of diagnosis in high-grade appendicular osteosarcoma: a 21 year single institution evaluation from east Denmark. Acta Oncologica. 2018;57(3):420–5.
46.
Meyers PA, Schwartz CL, Krailo M, Kleinerman ES, Betcher D, Bernstein ML, et al. Osteosarcoma: A Randomized, Prospective Trial of the Addition of Ifosfamide and/or Muramyl Tripeptide to Cisplatin, Doxorubicin, and High-Dose Methotrexate. Journal of Clinical Oncology. 2005;23(9):2004–11.
47.
Coindre JM. Nouvelle classification de l’OMS des tumeurs des tissus mous et des os. Annales de Pathologie. 2012;32(5):S115–6.
48.
Plant J, Cannon S. Diagnostic work up and recognition of primary bone tumours: a review. EFORT Open Reviews. 2016;1(6):247–53.
49.
Jo VY, Fletcher CDM. WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology. 2014;46(2):95–104.
50.
Hauben EI, Arends J, Vandenbroucke JP, van Asperen CJ, Van Marck E, Hogendoorn PCW. Multiple primary malignancies in osteosarcoma patients. Incidence and predictive value of osteosarcoma subtype for cancer syndromes related with osteosarcoma. European Journal of Human Genetics. 2003;11(8):611–8.
51.
Vogt A, Schmid S, Heinimann K, Frick H, Herrmann C, Cerny T, et al. Multiple primary tumours: challenges and approaches, a review. ESMO Open. 2017;2(2):e000172.
52.
Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, et al. Bone metastases: an overview. Oncology Reviews.
53.
Schrage YM, Lam S, Jochemsen AG, Cleton‐Jansen A, Taminiau AHM, Hogendoorn PCW, et al. Central chondrosarcoma progression is associated with pRb pathway alterations: CDK4 down‐regulation and p16 overexpression inhibit cell growth in vitro. Journal of Cellular and Molecular Medicine. 2009;13(9a):2843–52.
54.
Toomey EC, Schiffman JD, Lessnick SL. Recent advances in the molecular pathogenesis of Ewing’s sarcoma. Oncogene. 2010;29(32):4504–16.
55.
Franchi A, Pasquinelli G, Cenacchi G, Rocca CD, Gambini C, Bisceglia M, et al. Immunohistochemical and Ultrastructural Investigation of Neural Differentiation in Ewing Sarcoma/PNET of Bone and Soft Tissues. Ultrastructural Pathology. 2001;25(3):219–25.
56.
Kim SK, Park YK. Ewing sarcoma: a chronicle of molecular pathogenesis. Human Pathology. 2016;55:91–100.
57.
Rodríguez-Galindo C, Navid F, Liu T, Billups CA, Rao BN, Krasin MJ. Prognostic factors for local and distant control in Ewing sarcoma family of tumors. Annals of Oncology. 2008;19(4):814–20.
58.
Mitchell AD, Ayoub K, Mangham DC, Grimer RJ, Carter SR, Tillman RM. Experience in the treatment of dedifferentiated chondrosarcoma. The Journal of Bone and Joint Surgery British volume. 2000;82-B(1):55–61.
59.
Dickey ID, Rose PS, Fuchs B, Wold LE, Okuno SH, Sim FH, et al. Dedifferentiated Chondrosarcoma: The Role of Chemotherapy with Updated Outcomes. The Journal of Bone and Joint Surgery-American Volume. 2004;86(11):2412–8.
60.
TRIEB K, SULZBACHER I, KUBISTA B. Recurrence rate and progression of chondrosarcoma is correlated with heat shock protein expression. Oncology Letters. 2016;11(1):521–4.
61.
Chow WA. Chondrosarcoma: biology, genetics, and epigenetics. F1000Research. 7:1826.
62.
Bollini G, Kalifa C, Panuel M. Tumeurs osseuses malignes de l’enfant et de l’adolescent. Archives de Pédiatrie. 2006;13(6):669–71.
63.
Sakamoto A. The molecular pathogenesis of dedifferentiated chondrosarcoma. Indian Journal of Orthopaedics. 2014;48(3):262–5.
64.
Jamil N, Howie S, Salter DM. Therapeutic molecular targets in human chondrosarcoma. International Journal of Experimental Pathology. 2010;91(5):387–93.
65.
van Beerendonk HM, Rozeman LB, Taminiau AH, Sciot R, Bovée JV, Cleton‐Jansen A, et al. Molecular analysis of the INK4A/INK4A‐ARF gene locus in conventional (central) chondrosarcomas and enchondromas: indication of an important gene for tumour progression. The Journal of Pathology. 2004;202(3):359–66.
66.
Tiet TD, Hopyan S, Nadesan P, Gokgoz N, Poon R, Lin AC, et al. Constitutive Hedgehog Signaling in Chondrosarcoma Up-Regulates Tumor Cell Proliferation. The American Journal of Pathology. 2006;168(1):321–30.
67.
Leddy LR, Holmes RE. Chondrosarcoma of Bone. Cancer Treatment and Research. 2014. p. 117–30.
68.
Chen YC, Wu PK, Chen CF, Chen WM. Intralesional curettage of central low-grade chondrosarcoma: A midterm follow-up study. Journal of the Chinese Medical Association. 2017;80(3):178–82.
69.
Redondo A, Bagué S, Bernabeu D, Ortiz-Cruz E, Valverde C, Alvarez R, et al. Malignant bone tumors (other than Ewing’s): clinical practice guidelines for diagnosis, treatment and follow-up by Spanish Group for Research on Sarcomas (GEIS). Cancer Chemotherapy and Pharmacology. 2017;80(6):1113–31.
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.