×
Home Current Archive Editorial board
News Contact
Research paper

The effect of transcranial direct current stimulation (tDCS) on seizure control and epilepsy prevention

By
Moghadam Zahedi ,
Moghadam Zahedi
Rabi Atabaki ,
Rabi Atabaki
Hossein Khaleghzadeh-Ahangar
Hossein Khaleghzadeh-Ahangar

Abstract

Introduction. Epilepsy is one of the most common neurological diseases. It is an uncontrollable neuronal activity of different parts of the brain leading to convulsion and/or fainting. Although epileptic seizure control and therapeutics have significant advances, 20% -30% of individuals still have uncontrolled seizures. Patients under the medication's control are not free from the drug's side effects and complications. Epileptic patients experience many different challenges. Transcranial direct current stimulation (tDCS) is a safe and non-invasive brain stimulation method applied in drug-resistant seizures and epilepsies. It transmits positive/negative electrical current toward deep brain parts, modulating their electrical activity. Methods. This is a review article. All relevant articles which were accessible were reviewed. The effectiveness of tDCS in preventing epilepsy in patients undergoing seizures was reviewed in this article. Conclusion. According to the studies, this method can probably be an auxiliary method in preventing and treating seizures. As epileptic seizures were induced and confirmed in some studies after the application of tDCS, the method should be cautiously applied.

References

1.
Wu YJ, Chien ME, Chiang CC, Huang YZ, Durand DM, Hsu KS. Delta oscillation underlies the interictal spike changes after repeated transcranial direct current stimulation in a rat model of chronic seizures. Brain Stimulation. 2021;14(4):771–9.
2.
Kamida T, Kong S, Eshima N, Abe T, Fujiki M, Kobayashi H. Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats. Behavioural Brain Research. 2011;217(1):99–103.
3.
Khalilov I, Le Van Quyen M, Gozlan H, Ben-Ari Y. Epileptogenic Actions of GABA and Fast Oscillations in the Developing Hippocampus. Neuron. 2005;48(5):787–96.
4.
Avramescu S, Nita DA, Timofeev I. Neocortical Post-Traumatic Epileptogenesis Is Associated with Loss of GABAergic Neurons. Journal of Neurotrauma. 2009;26(5):799–812.
5.
Dhamne SC, Ekstein D, Zhuo Z, Gersner R, Zurakowski D, Loddenkemper T, et al. Acute seizure suppression by transcranial direct current stimulation in rats. Annals of Clinical and Translational Neurology. 2015;2(8):843–56.
6.
Lähteinen S, Pitkänen A, Saarelainen T, Nissinen J, Koponen E, Castrén E. Decreased BDNF signalling in transgenic mice reduces epileptogenesis. European Journal of Neuroscience. 2002;15(4):721–34.
7.
Heinrich C, Lähteinen S, Suzuki F, Anne-Marie L, Huber S, Häussler U, et al. Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiology of Disease. 2011;42(1):35–47.
8.
Kokaia M, Ernfors P, Kokaia Z, Elmér E, Jaenisch R, Lindvall O. Suppressed Epileptogenesis in BDNF Mutant Mice. Experimental Neurology. 1995;133(2):215–24.
9.
Wu YJ, Chien ME, Huang CH, Chiang CC, Lin CC, Huang CW, et al. Transcranial direct current stimulation alleviates seizure severity in kainic acid-induced status epilepticus rats. Experimental Neurology. 2020;328:113264.
10.
Godlevsky LS, Nenova OM, Pervak MP, Prybolovets TV, Bidnyuk KA. Effects of Transcranial Direct Current Stimulation of Rat Cerebral Structures on Pentylenetetrazole-Induced Seizures. Neurophysiology. 2017;49(4):272–5.
11.
Mosayebi Samani M, Agboada D, Jamil A, Kuo MF, Nitsche MA. Titrating the neuroplastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex. Cortex. 2019;119:350–61.
12.
Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE, Fonseca A, et al. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. Journal of NeuroEngineering and Rehabilitation. 2019;16(1).
13.
Xiang S, Qi S, Li Y, Wang L, Dai DY, Hu W. Trait anxiety moderates the effects of tDCS over the dorsolateral prefrontal cortex (DLPFC) on creativity. Personality and Individual Differences. 2021;177:110804.
14.
Bjekić J, Živanović M, Filipović SR. Transcranial Direct Current Stimulation (tDCS) for Memory Enhancement. Journal of Visualized Experiments. (175).
15.
Greinacher R, Buhôt L, Möller L, Learmonth G. The time course of ineffective sham‐blinding during low‐intensity (1 mA) transcranial direct current stimulation. European Journal of Neuroscience. 2019;50(8):3380–8.
16.
Kamida T, Kong S, Eshima N, Fujiki M. Cathodal transcranial direct current stimulation affects seizures and cognition in fully amygdala-kindled rats. Neurological Research. 2013;35(6):602–7.
17.
Kamali AM, Kazemiha M, Keshtkarhesamabadi B, Daneshvari M, Zarifkar A, Chakrabarti P, et al. Simultaneous transcranial and transcutaneous spinal direct current stimulation to enhance athletic performance outcome in experienced boxers. Scientific Reports. 11(1).
18.
Leroy A, Beigné M, Petyt G, Derambure P, Vaiva G, Amad A. Psychogenic non-epileptic seizures treated with guided transcranial direct current stimulation: A case report. Brain Stimulation. 2019;12(3):794–6.
19.
Rezakhani S, Amiri M, Weckhuysen S, Keliris GA. Therapeutic efficacy of seizure onset zone-targeting high-definition cathodal tDCS in patients with drug-resistant focal epilepsy. Clinical Neurophysiology. 2022;136:219–27.
20.
Ekici B. Transcranial Direct Current Stimulation–Induced Seizure. Clinical EEG and Neuroscience. 2015;46(2):169–169.
21.
Sierawska A, Moliadze V, Splittgerber M, Rogge A, Siniatchkin M, Buyx A. First Epileptic Seizure and Initial Diagnosis of Juvenile Myoclonus Epilepsy (JME) in a Transcranial Direct Current Stimulation (tDCS) Study– Ethical Analysis of a Clinical case. Neuroethics. 2020;13(3):347–51.
22.
Splittgerber M, Japaridze N, Sierawska A, Gimenez S, Nowak R, Siniatchkin M, et al. First generalized tonic clonic seizure in the context of pediatric tDCS – A case report. Neurophysiologie Clinique. 2020;50(1):69–72.
23.
Gezels L, van Kernebeek MW, Van den Ameele S, Vanderbruggen N, Baeken C, Crunelle CL. Prolonged seizure duration of electroconvulsive therapy in a patient pre-stimulated with transcranial direct current stimulation. Brain Stimulation. 2021;14(5):1172–3.
24.
Tekturk P, Erdogan ET, Kurt A, Kocagoncu E, Kucuk Z, Kinay D, et al. Transcranial direct current stimulation improves seizure control in patients with Rasmussen encephalitis. Epileptic Disorders. 2016;18(1):58–66.
25.
Tekturk P, Erdogan ET, Kurt A, Vanli-yavuz EN, Ekizoglu E, Kocagoncu E, et al. The effect of transcranial direct current stimulation on seizure frequency of patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Clinical Neurology and Neurosurgery. 2016;149:27–32.
26.
Assenza G, Campana C, Assenza F, Pellegrino G, Di Pino G, Fabrizio E, et al. Cathodal transcranial direct current stimulation reduces seizure frequency in adults with drug-resistant temporal lobe epilepsy: A sham controlled study. Brain Stimulation. 2017;10(2):333–5.
27.
Noachtar S, Rémi J. The role of EEG in epilepsy: A critical review. Epilepsy & Behavior. 2009;15(1):22–33.
28.
Zoghi M, Jaberzadeh S. Letter to the editor: Reducing seizure frequency in patients with refractory epilepsy with cathodal transcranial direct current stimulation. Brain Stimulation. 2021;14(5):1091–2.
29.
Yang D, Wang Q, Xu C, Fang F, Fan J, Li L, et al. Transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: A randomized, double-blind, sham-controlled, and three-arm parallel multicenter study. Brain Stimulation. 2020;13(1):109–16.
30.
San-Juan D, Morales Báez JA, Farías Fernández LD, López NG, Segovia DR, Pesqueira GQ, et al. In-session seizures during transcranial direct current stimulation in patients with epilepsy. Brain Stimulation. 2021;14(1):152–3.
31.
Roseti C, van Vliet EA, Cifelli P, Ruffolo G, Baayen JC, Di Castro MA, et al. GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiology of Disease. 2015;82:311–20.
32.
Arisi GM, Foresti ML, Katki K, Shapiro LA. Increased CCL2, CCL3, CCL5, and IL-1β cytokine concentration in piriform cortex, hippocampus, and neocortex after pilocarpine-induced seizures. Journal of Neuroinflammation. 2015;12(1).
33.
Ravizza T, Noé F, Zardoni D, Vaghi V, Sifringer M, Vezzani A. Interleukin Converting Enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1β production. Neurobiology of Disease. 2008;31(3):327–33.
34.
Regner GG, Torres ILS, de Oliveira C, Pflüger P, da Silva LS, Scarabelot VL, et al. Transcranial direct current stimulation (tDCS) affects neuroinflammation parameters and behavioral seizure activity in pentylenetetrazole-induced kindling in rats. Neuroscience Letters. 2020;735:135162.
35.
Lü Y, Liu S, Yu W. The causes of new-onset epilepsy and seizures in the elderly. Neuropsychiatric Disease and Treatment. :1425.
36.
Duncan JS, Sander JW, Sisodiya SM, Walker MC. Adult epilepsy. The Lancet. 2006;367(9516):1087–100.
37.
Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475–82.
38.
Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. <scp>ILAE</scp>                    classification of the epilepsies: Position paper of the                    <scp>ILAE</scp>                    Commission for Classification and Terminology. Epilepsia. 2017;58(4):512–21.
39.
Beghi E. The Epidemiology of Epilepsy. Neuroepidemiology. 2020;54(2):185–91.
40.
Gorter JA, van Vliet EA, Aronica E. Status epilepticus, blood–brain barrier disruption, inflammation, and epileptogenesis. Epilepsy &amp; Behavior. 2015;49:13–6.
41.
Fukuyama K, Fukuzawa M, Shiroyama T, Okada M. Pathogenesis and pathophysiology of autosomal dominant sleep‐related hypermotor epilepsy with S284L‐mutant α4 subunit of nicotinic ACh receptor. British Journal of Pharmacology. 2020;177(9):2143–62.
42.
Sharma R, Leung WL, Zamani A, O’Brien TJ, Casillas Espinosa PM, Semple BD. Neuroinflammation in Post-Traumatic Epilepsy: Pathophysiology and Tractable Therapeutic Targets. Brain Sciences. 9(11):318.
43.
Goldenberg MM. Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. P T. 2010;35(7):392–415.
44.
Kokkonen J, Kokkonen ER, Saukkonen AL, Pennanen P. Psychosocial outcome of young adults with epilepsy in childhood. Journal of Neurology, Neurosurgery &amp; Psychiatry. 1997;62(3):265–8.
45.
Herman ST. Epilepsy after brain insult. Neurology. 2002;59(9_suppl_5).
46.
Huff JS, Fountain NB. Pathophysiology and Definitions of Seizures and Status Epilepticus. Emergency Medicine Clinics of North America. 2011;29(1):1–13.
47.
Celli R, Santolini I, Van Luijtelaar G, Ngomba RT, Bruno V, Nicoletti F. Targeting metabotropic glutamate receptors in the treatment of epilepsy: rationale and current status. Expert Opinion on Therapeutic Targets. 2019;23(4):341–51.
48.
Falco-Walter J. Epilepsy—Definition, Classification, Pathophysiology, and Epidemiology. Seminars in Neurology. 2020;40(06):617–23.
49.
Hauser WA, Beghi E. First seizure definitions and worldwide incidence and mortality. Epilepsia. 2008;49(s1):8–12.
50.
Sarmast ST, Abdullahi AM, Jahan N. Current Classification of Seizures and Epilepsies: Scope, Limitations and Recommendations for Future Action. Cureus. 2020;
51.
Stafstrom CE, Carmant L. Seizures and Epilepsy: An Overview for Neuroscientists. Cold Spring Harbor Perspectives in Medicine. 2015;5(6):a022426–a022426.
52.
Padma T, Kumari ChU. Sudden Fall Detection and Protection for Epileptic Seizures. 2018 International Conference on Recent Innovations in Electrical, Electronics &amp; Communication Engineering (ICRIEECE). 2018. p. 2334–6.
53.
Fan J, Shan W, Wu J, Wang Q. Research progress of vagus nerve stimulation in the treatment of epilepsy. CNS Neuroscience &amp; Therapeutics. 2019;25(11):1222–8.
54.
Galanopoulou AS, Buckmaster PS, Staley KJ, Moshé SL, Perucca E, Engel J, et al. Identification of new epilepsy treatments: Issues in preclinical methodology. Epilepsia. 2012;53(3):571–82.
55.
Falco-Walter JJ, Scheffer IE, Fisher RS. The new definition and classification of seizures and epilepsy. Epilepsy Research. 2018;139:73–9.
56.
Perucca E, Tomson T. The pharmacological treatment of epilepsy in adults. The Lancet Neurology. 2011;10(5):446–56.
57.
Schmidt D. Drug treatment of epilepsy: Options and limitations. Epilepsy &amp; Behavior. 2009;15(1):56–65.
58.
Devinsky O, Honigfeld G, Patin J. Clozapine‐related seizures. Neurology. 1991;41(3):369–369.
59.
Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon CS, Dykeman J, et al. Prevalence and incidence of epilepsy. Neurology. 2017;88(3):296–303.
60.
Forsgren L, Beghi E, Õun A, Sillanpää M. The epidemiology of epilepsy in Europe – a systematic review. European Journal of Neurology. 2005;12(4):245–53.
61.
de Boer HM, Mula M, Sander JW. The global burden and stigma of epilepsy. Epilepsy &amp; Behavior. 2008;12(4):540–6.
62.
Lechtenberg R. Epilepsy and the Family. 2002.
63.
Yemadje L, Houinato D, Quet F, Druet‐Cabanac M, Preux P. Understanding the differences in prevalence of epilepsy in tropical regions. Epilepsia. 2011;52(8):1376–81.
64.
Newton CR, Garcia HH. Epilepsy in poor regions of the world. The Lancet. 2012;380(9848):1193–201.
65.
Cloyd J, Hauser W, Towne A, Ramsay R, Mattson R, Gilliam F, et al. Epidemiological and medical aspects of epilepsy in the elderly. Epilepsy Research. 2006;68:39–48.
66.
The epidemiology of the epilepsies. Handbook of Clinical Neurology. 2012. p. 113–33.
67.
Smith SJM. EEG in the diagnosis, classification, and management of patients with epilepsy. Journal of Neurology, Neurosurgery &amp; Psychiatry. 2005;76(suppl_2):ii2–7.

Citation

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.