×
Home Current Archive Editorial board
News Contact
Research paper

Angiogenesis in glioblastoma: Molecular and cellular mechanisms and clinical applications

By
Desanka Tasić ,
Desanka Tasić
Irena Dimov ,
Irena Dimov
Miloš Kostov ,
Miloš Kostov
Nataša Vidović ,
Nataša Vidović
Dragan Dimov
Dragan Dimov

Abstract

Glioblastoma (GBM) is the most common malignant primary brain tumor in adults and carries poor prognosis. Despite advances in therapy, no significant increase in survival has been achieved for GBM patients. These tumors inevitably recur in the majority of patients, and the therapeutic options for recurrent tumors are limited. GBMs are aggressive, fast-growing, and highly infiltrative tumors, with exuberant angiogenesis (microvascular proliferation) and necrosis. However, the newly formed tumor vessels are structurally and functionally abnormal, creating areas of hypoxia and ultimately necrosis, contributing to tumor progression and aggressiveness. Since GBMs are hypervascular in nature, targeting tumor angiogenesis emerged as a promising therapeutic strategy. In this review, we summarized the molecular and cellular mechanisms governing GBM angiogenesis, the other modes of tumor vascularization, and the key mediators of these processes. We also discussed the importance of tumor hypoxia in promoting angiogenic and vasculogenic processes, the contributions of GBM stem cells to tumor vasculature, the anti-angiogenic therapy for GBM, and the resistance to such therapy. A better understanding of the molecular and cellular basis of GBM neovascularization, the mechanisms of resistance to therapy, and the contributions of GBM stem cells to tumor vasculature will lead to the development of more effective treatment strategies.

References

1.
Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, et al. Therapy-Induced Acute Recruitment of Circulating Endothelial Progenitor Cells to Tumors. Science. 2006;313(5794):1785–7.
2.
Ferrara N. Pathways mediating VEGF-independent tumor angiogenesis. Cytokine & Growth Factor Reviews. 2010;21(1):21–6.
3.
Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K, et al. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. Journal of Leukocyte Biology. 2008;83(5):1136–44.
4.
Raychaudhuri B, Rayman P, Huang P, Grabowski M, Hambardzumyan D, Finke JH, et al. Myeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytes. Journal of Neuro-Oncology. 2015;122(2):293–301.
5.
Saio. Tumor-associated macrophage/microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1. International Journal of Oncology. 2009;34(6).
6.
Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-Oncology. 2010;12(11):1113–25.
7.
Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses1. Neuro-Oncology. 2006;8(3):261–79.
8.
Yang I, Han SJ, Kaur G, Crane C, Parsa AT. The role of microglia in central nervous system immunity and glioma immunology. Journal of Clinical Neuroscience. 2010;17(1):6–10.
9.
Komohara Y, Ohnishi K, Kuratsu J, Takeya M. Possible involvement of the M2 anti‐inflammatory macrophage phenotype in growth of human gliomas. The Journal of Pathology. 2008;216(1):15–24.
10.
Nishie A, Ono M, T S. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res. 1999;5:1107–13.
11.
Davoust N, Vuaillat C, Androdias G, Nataf S. From bone marrow to microglia: barriers and avenues. Trends in Immunology. 2008;29(5):227–34.
12.
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology. 2009;9(3):162–74.
13.
Mantovani A, Sica A, Allavena P, Garlanda C, Locati M. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Human Immunology. 2009;70(5):325–30.
14.
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.
15.
Zheng P, Hop WC, Luider TM, Sillevis Smitt PAE, Kros JM. Increased levels of circulating endothelial progenitor cells and circulating endothelial nitric oxide synthase in patients with gliomas. Annals of Neurology. 2007;62(1):40–8.
16.
Rafat N, Beck GCh, Schulte J, Tuettenberg J, Vajkoczy P. Circulating endothelial progenitor cells in malignant gliomas. Journal of Neurosurgery. 2010;112(1):43–9.
17.
Bertolini F, Shaked Y, Mancuso P, Kerbel RS. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nature Reviews Cancer. 2006;6(11):835–45.
18.
Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of Putative Progenitor Endothelial Cells for Angiogenesis. Science. 1997;275(5302):964–6.
19.
Huang FJ, You WK, Bonaldo P, Seyfried TN, Pasquale EB, Stallcup WB. Pericyte deficiencies lead to aberrant tumor vascularizaton in the brain of the NG2 null mouse. Developmental Biology. 2010;344(2):1035–46.
20.
Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood. 2009;114(24):5091–101.
21.
Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G. PDGFRβ+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nature Cell Biology. 2005;7(9):870–9.
22.
Sakariassen PØ, Prestegarden L, Wang J, Skaftnesmo KO, Mahesparan R, Molthoff C, et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proceedings of the National Academy of Sciences. 2006;103(44):16466–71.
23.
di Tomaso E, Snuderl M, Kamoun WS, Duda DG, Auluck PK, Fazlollahi L, et al. Glioblastoma Recurrence after Cediranib Therapy in Patients: Lack of “Rebound” Revascularization as Mode of Escape. Cancer Research. 2011;71(1):19–28.
24.
Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nature Reviews Cancer. 2008;8(8):592–603.
25.
El Hallani S, Boisselier B, Peglion F, Rousseau A, Colin C, Idbaih A, et al. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain. 2010;133(4):973–82.
26.
Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468(7325):824–8.
27.
Narayana A, Kunnakkat SD, Medabalmi P, Golfinos J, Parker E, Knopp E, et al. Change in Pattern of Relapse After Antiangiogenic Therapy in High-Grade Glioma. International Journal of Radiation Oncology*Biology*Physics. 2012;82(1):77–82.
28.
de Groot JF, Lamborn KR, Chang SM, Gilbert MR, Cloughesy TF, Aldape K, et al. Phase II Study of Aflibercept in Recurrent Malignant Glioma: A North American Brain Tumor Consortium Study. Journal of Clinical Oncology. 2011;29(19):2689–95.
29.
Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus Radiotherapy–Temozolomide for Newly Diagnosed Glioblastoma. New England Journal of Medicine. 2014;370(8):709–22.
30.
Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma. New England Journal of Medicine. 2014;370(8):699–708.
31.
Lai A, Tran A, Nghiemphu PL, Pope WB, Solis OE, Selch M, et al. Phase II Study of Bevacizumab Plus Temozolomide During and After Radiation Therapy for Patients With Newly Diagnosed Glioblastoma Multiforme. Journal of Clinical Oncology. 2011;29(2):142–8.
32.
Taal W, Oosterkamp HM, Walenkamp AME, Dubbink HJ, Beerepoot LV, Hanse MCJ, et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. The Lancet Oncology. 2014;15(9):943–53.
33.
Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, et al. Phase II Trial of Single-Agent Bevacizumab Followed by Bevacizumab Plus Irinotecan at Tumor Progression in Recurrent Glioblastoma. Journal of Clinical Oncology. 2009;27(5):740–5.
34.
Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab Alone and in Combination With Irinotecan in Recurrent Glioblastoma. Journal of Clinical Oncology. 2009;27(28):4733–40.
35.
Dimov I, Tasic-Dimov D, Conic I, Stefanovic V. Glioblastoma Multiforme Stem Cells. The Scientific World JOURNAL. 2011;11:930–58.
36.
Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, et al. Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth. Cell. 2013;153(1):139–52.
37.
Arbab AS, Jain M, Achyut BR. Vascular mimicry: the next big glioblastoma target. Biochem Physiol. 2015;4:140.
38.
Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010;468(7325):829–33.
39.
Seidel S, Garvalov BK, Wirta V, von Stechow L, Schänzer A, Meletis K, et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2α. Brain. 2010;133(4):983–95.
40.
Pistollato F, Abbadi S, Rampazzo E, Persano L, Della Puppa A, Frasson C, et al. Intratumoral Hypoxic Gradient Drives Stem Cells Distribution and MGMT Expression in Glioblastoma. Stem Cells. 2010;28(5):851–62.
41.
Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α. Oncogene. 2009;28(45):3949–59.
42.
Folkins C, Shaked Y, Man S, Tang T, Lee CR, Zhu Z, et al. Glioma Tumor Stem-Like Cells Promote Tumor Angiogenesis and Vasculogenesis via Vascular Endothelial Growth Factor and Stromal-Derived Factor 1. Cancer Research. 2009;69(18):7243–51.
43.
Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H, et al. Inhibition of Notch Signaling in Glioblastoma Targets Cancer Stem Cells via an Endothelial Cell Intermediate. Stem Cells. 2010;28(6):1019–29.
44.
Lathia JD, Heddleston JM, Venere M, Rich JN. Deadly Teamwork: Neural Cancer Stem Cells and the Tumor Microenvironment. Cell Stem Cell. 2011;8(5):482–5.
45.
Charles N, Ozawa T, Squatrito M, Bleau AM, Brennan CW, Hambardzumyan D, et al. Perivascular Nitric Oxide Activates Notch Signaling and Promotes Stem-like Character in PDGF-Induced Glioma Cells. Cell Stem Cell. 2010;6(2):141–52.
46.
Nduom EKE, Hadjipanayis CG, Van Meir EG. Glioblastoma Cancer Stem-Like Cells. The Cancer Journal. 2012;18(1):100–6.
47.
Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, et al. CD133+ and CD133− Glioblastoma-Derived Cancer Stem Cells Show Differential Growth Characteristics and Molecular Profiles. Cancer Research. 2007;67(9):4010–5.
48.
Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al. A Perivascular Niche for Brain Tumor Stem Cells. Cancer Cell. 2007;11(1):69–82.
49.
Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, et al. Stem Cell–like Glioma Cells Promote Tumor Angiogenesis through Vascular Endothelial Growth Factor. Cancer Research. 2006;66(16):7843–8.
50.
Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma. Cancer Research. 2004;64(19):7011–21.
51.
Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nature Reviews Neuroscience. 2007;8(8):610–22.
52.
Fischer I, Gagner J, Law M, Newcomb EW, Zagzag D. Angiogenesis in Gliomas: Biology and Molecular Pathophysiology. Brain Pathology. 2005;15(4):297–310.
53.
Tanaka S, Louis DN, Curry WT, Batchelor TT, Dietrich J. Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? Nature Reviews Clinical Oncology. 2013;10(1):14–26.
54.
Batchelor TT, Reardon DA, de Groot JF, Wick W, Weller M. Antiangiogenic Therapy for Glioblastoma: Current Status and Future Prospects. Clinical Cancer Research. 2014;20(22):5612–9.
55.
Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al. AZD2171, a Pan-VEGF Receptor Tyrosine Kinase Inhibitor, Normalizes Tumor Vasculature and Alleviates Edema in Glioblastoma Patients. Cancer Cell. 2007;11(1):83–95.
56.
Vredenburgh JJ, Desjardins A, Herndon JE, Marcello J, Reardon DA, Quinn JA, et al. Bevacizumab Plus Irinotecan in Recurrent Glioblastoma Multiforme. Journal of Clinical Oncology. 2007;25(30):4722–9.
57.
Dimov I, Tasić D, Stefanović I, Dimov D. New Insights Into Molecular Basis of Glioblastoma Multiforme and Associated Immunosuppression. Acta Facultatis Medicae Naissensis. 2013;30(4).
58.
Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, et al. Emerging insights into the molecular and cellular basis of glioblastoma. Genes & Development. 2012;26(8):756–84.
59.
Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-Oncology. 2005;7(2):134–53.
60.
Lu-Emerson C, Duda DG, Emblem KE, Taylor JW, Gerstner ER, Loeffler JS, et al. Lessons From Anti–Vascular Endothelial Growth Factor and Anti–Vascular Endothelial Growth Factor Receptor Trials in Patients With Glioblastoma. Journal of Clinical Oncology. 2015;33(10):1197–213.
61.
Onishi M, Ichikawa T, Kurozumi K, Date I. Angiogenesis and invasion in glioma. Brain Tumor Pathology. 2011;28(1):13–24.
62.
Wong MLH, Prawira A, Kaye AH, Hovens CM. Tumour angiogenesis: Its mechanism and therapeutic implications in malignant gliomas. Journal of Clinical Neuroscience. 2009;16(9):1119–30.
63.
Bergers G. Bone Marrow-Derived Cells in GBM Neovascularization. CNS Cancer. 2009. p. 749–73.
64.
Reiss Y, Machein MR, Plate KH. The Role of Angiopoietins During Angiogenesis in Gliomas. Brain Pathology. 2005;15(4):311–7.
65.
Machein MR, Plate KH. Role of VEGF in Developmental Angiogenesis and in Tumor Angiogenesis in the Brain. Cancer Treatment and Research. 2004. p. 191–218.
66.
Acker T, Plate KH. Hypoxia and Hypoxia Inducible Factors (HIF) as Important Regulators of Tumor Physiology. Cancer Treatment and Research. 2004. p. 219–48.
67.
Zagzag D, Lukyanov Y, Lan L, Ali MA, Esencay M, Mendez O, et al. Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Laboratory Investigation. 2006;86(12):1221–32.
68.
Rong Y, Durden DL, Van Meir EG, Brat DJ. ‘Pseudopalisading’ Necrosis in Glioblastoma: A Familiar Morphologic Feature That Links Vascular Pathology, Hypoxia, and Angiogenesis. Journal of Neuropathology & Experimental Neurology. 2006;65(6):529–39.
69.
Brat DJ, Van Meir EG. Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Laboratory Investigation. 2004;84(4):397–405.
70.
Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, et al. Pseudopalisades in Glioblastoma Are Hypoxic, Express Extracellular Matrix Proteases, and Are Formed by an Actively Migrating Cell Population. Cancer Research. 2004;64(3):920–7.
71.
Tehrani M, Friedman TM, Olson JJ, Brat DJ. RESEARCH ARTICLE: Intravascular Thrombosis in Central Nervous System Malignancies: A Potential Role in Astrocytoma Progression to Glioblastoma. Brain Pathology. 2008;18(2):164–71.
72.
Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: updated approaches from recent biological insights. Annals of Oncology. 2017;28(7):1457–72.
73.
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine. 2005;352(10):987–96.
74.
Zhang M, Ye G, Li J, Wang Y. Recent advance in molecular angiogenesis in glioblastoma: the challenge and hope for anti-angiogenic therapy. Brain Tumor Pathology. 2015;32(4):229–36.
75.
Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes & Development. 2007;21(21):2683–710.
76.
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.
77.
Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell. 2009;15(6):501–13.
78.
Zagzag D, Zhong H, JM S. Expression of hypoxia-inducible factor 1a in brain tumors: association with angiogenesis, invasion, and progression. Cancer. 2000;88:2606–18.
79.
Keith B, Simon MC. Hypoxia-Inducible Factors, Stem Cells, and Cancer. Cell. 2007;129(3):465–72.
80.
Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nature Reviews Cancer. 2008;8(8):604–17.
81.
Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nature Medicine. 2011;17(11):1359–70.
82.
Zhang J feng, Chen Y, Qiu X xin, Tang W long, Zhang J dong, Huang J huang, et al. The vascular delta-like ligand-4 (DLL4)-Notch4 signaling correlates with angiogenesis in primary glioblastoma: an immunohistochemical study. Tumor Biology. 2016;37(3):3797–805.
83.
Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M, et al. The Notch Ligands Dll4 and Jagged1 Have Opposing Effects on Angiogenesis. Cell. 2009;137(6):1124–35.
84.
Thurston G, Noguera-Troise I, Yancopoulos GD. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Reviews Cancer. 2007;7(5):327–31.
85.
Stevenson CB, Ehtesham M, McMillan KM, Valadez JG, Edgeworth ML, Price RR, et al. CXCR4 EXPRESSION IS ELEVATED IN GLIOBLASTOMA MULTIFORME AND CORRELATES WITH AN INCREASE IN INTENSITY AND EXTENT OF PERITUMORAL T2-WEIGHTED MAGNETIC RESONANCE IMAGING SIGNAL ABNORMALITIES. Neurosurgery. 2008;63(3):560–70.
86.
Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncology. 2005;7(2):122–33.
87.
Guo P, Hu B, Gu W, Xu L, Wang D, Huang HJS, et al. Platelet-Derived Growth Factor-B Enhances Glioma Angiogenesis by Stimulating Vascular Endothelial Growth Factor Expression in Tumor Endothelia and by Promoting Pericyte Recruitment. The American Journal of Pathology. 2003;162(4):1083–93.
88.
De Palma M, Venneri MA, Galli R, Sergi LS, Politi LS, Sampaolesi M, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 2005;8(3):211–26.
89.
Louis DN, Ohgaki H. Wiestler OD et al. 2016.
90.
Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology. 2005;7(4):452–64.
91.
Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, et al. Vessel Cooption, Regression, and Growth in Tumors Mediated by Angiopoietins and VEGF. Science. 1999;284(5422):1994–8.
92.
Aghi M, Cohen KS, Klein RJ, Scadden DT, Chiocca EA. Tumor Stromal-Derived Factor-1 Recruits Vascular Progenitors to Mitotic Neovasculature, where Microenvironment Influences Their Differentiated Phenotypes. Cancer Research. 2006;66(18):9054–64.
93.
Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, et al. Autocrine VEGF Signaling Is Required for Vascular Homeostasis. Cell. 2007;130(4):691–703.
94.
Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, et al. HIF1α Induces the Recruitment of Bone Marrow-Derived Vascular Modulatory Cells to Regulate Tumor Angiogenesis and Invasion. Cancer Cell. 2008;13(3):206–20.
95.
Lakka SS, Gondi CS, Rao JS. Proteases and Glioma Angiogenesis. Brain Pathology. 2005;15(4):327–41.
96.
Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews Cancer. 2008;8(8):618–31.
97.
D’Alessio A, Proietti G, Lama G, Biamonte F, Lauriola L, Moscato U, et al. Analysis of angiogenesis related factors in glioblastoma, peritumoral tissue and their derived cancer stem cells. Oncotarget. 2016;7(48):78541–56.
98.
Kerbel RS. Tumor Angiogenesis. New England Journal of Medicine. 2008;358(19):2039–49.
99.
Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nature Medicine. 2003;9(6):669–76.
100.
Hu B, Cheng SY. Mechanisms of brain tumor angiogenesis. 2009.

Citation

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.