×
Home Current Archive Editorial board
News Contact
Review paper

Retinitis pigmentosa genes implicated in the population of America: A systematic review

By
Olivia Narváez Orcid logo ,
Olivia Narváez
Zerón Mendieta ,
Zerón Mendieta
Orlando Torres Orcid logo ,
Orlando Torres
Magally Escobar Orcid logo ,
Magally Escobar
Martha Trujillo-Güiza Orcid logo
Martha Trujillo-Güiza

Abstract

Retinitis pigmentosa (RP) is a diverse group of inherited retinal diseases characterized by the gradual degeneration of rod and cone photoreceptors in the retina. RP is primarily inherited, with numerous genetic mutations implicated in its pathogenesis. The aim of this study was to summarize the findings of studies related to genes implicated in retinitis pigmentosa, in autosomal dominant (adRP), autosomal recessive (arRP), and X-linked RP (xlRP) patients in America. In this comprehensive search of literature via the Medline/PubMed database, SciELO, Redalyc, ScienceDirect, and Google Scholar (English/Spanish), 75 articles between 2010-2020 were reviewed; the final analysis was based on 21 articles. The main gene mutations found in America for adRP were RHO (rhodopsin) and PRPF31 (pre-mRNA processing factor 31); for arRP, USH2A (usherin 2A) and EYS (eyes shut homolog); and for xlRP, RPGR (retinitis pigmentosa GTPase regulator) and RP2 (retinitis pigmentosa 2). Most of the genes currently found worldwide to cause RP were present in America, with similarities and differences with other populations in Asia and Europe.

References

1.
Tracewska AM, Kocyła-Karczmarewicz B, Rafalska A, Murawska J, Jakubaszko-Jablonska J, Rydzanicz M, et al. Genetic Spectrum of ABCA4-Associated Retinal Degeneration in Poland. Genes. 10(12):959.
2.
Ezquerra-Inchausti M, Barandika O, Anasagasti A, Irigoyen C, López de Munain A, Ruiz-Ederra J. High prevalence of mutations affecting the splicing process in a Spanish cohort with autosomal dominant retinitis pigmentosa. Scientific Reports. 7(1).
3.
Huang L, Zhang Q, Huang X, Qu C, Ma S, Mao Y, et al. Mutation screening in genes known to be responsible for Retinitis Pigmentosa in 98 Small Han Chinese Families. Scientific Reports. 7(1).
4.
George A A, Eleftherios D L, Anastasia A S, Paris G T, Stavrenia Ch K. Recent Developments on the major genes involved in retinitis pigmentosa. IP International Journal of Ocular Oncology and Oculoplasty. 2020;6(3):157–66.
5.
Al-Maghtheh M, Inglehearn CF, Jeffrey TK, Evans K, Moore AT, Jay M, et al. Identification of a sixth locus for autosomal dominant retinitis pigmentosa on chromosome 19. Human Molecular Genetics. 1994;3(2):351–4.
6.
Gandra M, Anandula V, Authiappan V. Retinitis pigmentosa: mutation analysis of RHO, PRPF31, RP1, and IMPDH1 genes in patients from India. Mol Vis. 2008;14:1105–13.
7.
Van Cauwenbergh C, Coppieters F, Roels D, De Jaegere S, Flipts H, De Zaeytijd J, et al. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families. PLOS ONE. 12(1):e0170038.
8.
Beryozkin A, Levy G, Blumenfeld A, Meyer S, Namburi P, Morad Y, et al. Genetic Analysis of the Rhodopsin Gene Identifies a Mosaic Dominant Retinitis Pigmentosa Mutation in a Healthy Individual. Investigative Opthalmology & Visual Science. 2016;57(3):940.
9.
Marti´nez-Gimeno M, Gamundi MJ, Hernan I, Maseras M, Milla´ E, Ayuso C, et al. Mutations in the Pre-mRNA Splicing-Factor GenesPRPF3,PRPF8, andPRPF31in Spanish Families with Autosomal Dominant Retinitis Pigmentosa. Investigative Opthalmology & Visual Science. 2003;44(5):2171.
10.
Kim MS, Joo K, Seong MW, Kim MJ, Park KH, Park SS, et al. Genetic Mutation Profiles in Korean Patients with Inherited Retinal Diseases. Journal of Korean Medical Science. 34(21).
11.
Ziviello C, Simonelli F, Testa F, Anastasi M, Marzoli SB, Falsini B, et al. Molecular genetics of autosomal dominant retinitis pigmentosa (ADRP): a comprehensive study of 43 Italian families. Journal of Medical Genetics. 2005;42(7):e47–e47.
12.
Ali MU, Rahman MSU, Cao J, Yuan PX. Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario. 3 Biotech. 2017;7(4).
13.
Parmeggiani F, S. Sorrentino F, Ponzin D, Barbaro V, Ferrari S, Di Iorio E. Retinitis Pigmentosa: Genes and Disease Mechanisms. Current Genomics. 2011;12(4):238–49.
14.
Toualbi L, Toms M, Moosajee M. USH2A-retinopathy: From genetics to therapeutics. Experimental Eye Research. 2020;201:108330.
15.
Perez-Carro R, Corton M, Sánchez-Navarro I, Zurita O, Sanchez-Bolivar N, Sánchez-Alcudia R, et al. Panel-based NGS Reveals Novel Pathogenic Mutations in Autosomal Recessive Retinitis Pigmentosa. Scientific Reports. 6(1).
16.
Sharon D, Banin E. Nonsyndromic retinitis pigmentosa is highly prevalent in the Jerusalem region with a high frequency of founder mutations. Mol Vis. 2015;21:783–92.
17.
Fahim AT, Bouzia Z, Branham KH, Kumaran N, Vargas ME, Feathers KL, et al. Detailed clinical characterisation, unique features and natural history of autosomal recessive RDH12-associated retinal degeneration. British Journal of Ophthalmology. :bjophthalmol-2018-313580.
18.
Numa S, Oishi A, Higasa K, Oishi M, Miyata M, Hasegawa T, et al. EYS is a major gene involved in retinitis pigmentosa in Japan: genetic landscapes revealed by stepwise genetic screening. Scientific Reports. 10(1).
19.
Bocquet B, Lacroux A, Surget MO, Baudoin C, Marquette V, Manes G, et al. Relative Frequencies of Inherited Retinal Dystrophies and Optic Neuropathies in Southern France: Assessment of 21-year Data Management. Ophthalmic Epidemiology. 2013;20(1):13–25.
20.
Kurata K, Hosono K, Hayashi T, Mizobuchi K, Katagiri S, Miyamichi D, et al. X-linked Retinitis Pigmentosa in Japan: Clinical and Genetic Findings in Male Patients and Female Carriers. International Journal of Molecular Sciences. 20(6):1518.
21.
Bravo-Gil N, González-del Pozo M, Martín-Sánchez M, Méndez-Vidal C, Rodríguez-de la Rúa E, Borrego S, et al. Unravelling the genetic basis of simplex Retinitis Pigmentosa cases. Scientific Reports. 7(1).
22.
Smith SO. Structure and Activation of the Visual Pigment Rhodopsin. Annual Review of Biophysics. 2010;39(1):309–28.
23.
Ali-Nasser T, Zayit-Soudry S, Banin E. Autosomal dominant retinitis pigmentosa with incomplete penetrance due to an intronic mutation of the PRPF31 gene. Mol Vis. 2022;28:359–68.
24.
Megaw RD, Soares DC, Wright AF. RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Experimental Eye Research. 2015;138:32–41.
25.
Patil SB, Hurd TW, Ghosh AK, Murga-Zamalloa CA, Khanna H. Functional Analysis of Retinitis Pigmentosa 2 (RP2) Protein Reveals Variable Pathogenic Potential of Disease-Associated Missense Variants. PLoS ONE. 6(6):e21379.
26.
Cai X, Conley SM, Naash MI. RPE65: Role in the Visual Cycle, Human Retinal Disease, and Gene Therapy. Ophthalmic Genetics. 2009;30(2):57–62.
27.
Aleman TS, Uyhazi KE, Serrano LW, Vasireddy V, Bowman SJ, Ammar MJ, et al. RDH12Mutations Cause a Severe Retinal Degeneration With Relatively Spared Rod Function. Investigative Opthalmology & Visual Science. 2018;59(12):5225.
28.
Daich Varela M, Moya R, Schlottmann PG, Hufnagel RB, Arberas C, Fernández FM, et al. Ophthalmic genetics in South America. American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 2020;184(3):753–61.
29.
Bryant L, Lozynska O, Marsh A, Papp TE, van Gorder L, Serrano LW, et al. Identification of a novel pathogenic missense mutation inPRPF31using whole exome sequencing: a case report. British Journal of Ophthalmology. 2019;103(6):761–7.
30.
Dias MF, Joo K, Kemp JA, Fialho SL, da Silva Cunha A, Woo SJ, et al. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Progress in Retinal and Eye Research. 2018;63:107–31.
31.
Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, et al. Non-syndromic retinitis pigmentosa. Progress in Retinal and Eye Research. 2018;66:157–86.
32.
Lunghi C, Galli-Resta L, Binda P, Cicchini GM, Placidi G, Falsini B, et al. Visual Cortical Plasticity in Retinitis Pigmentosa. Investigative Opthalmology & Visual Science. 2019;60(7):2753.
33.
Daiger SP, Bowne SJ, Sullivan LS. Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa. Cold Spring Harbor Perspectives in Medicine. 2015;5(10):a017129.
34.
Trapani I, Puppo A, Auricchio A. Vector platforms for gene therapy of inherited retinopathies. Progress in Retinal and Eye Research. 2014;43:108–28.
35.
Sarai DP. Retinosis Pigmentaria. Rev Med. 2012;3(3):163–6.
36.
Motta FL, Martin RP, Filippelli-Silva R, Salles MV, Sallum JMF. Relative frequency of inherited retinal dystrophies in Brazil. Scientific Reports. 8(1).
37.
Zenteno JC, García‐Montaño LA, Cruz‐Aguilar M, Ronquillo J, Rodas‐Serrano A, Aguilar‐Castul L, et al. Extensive genic and allelic heterogeneity underlying inherited retinal dystrophies in Mexican patients molecularly analyzed by next‐generation sequencing. Molecular Genetics & Genomic Medicine. 2020;8(1).
38.
Zhang Q, Xu M, Verriotto JD, Li Y, Wang H, Gan L, et al. Next-generation sequencing-based molecular diagnosis of 35 Hispanic retinitis pigmentosa probands. Scientific Reports. 6(1).
39.
Coussa RG, Chakarova C, Ajlan R, Taha M, Kavalec C, Gomolin J, et al. Genotype and Phenotype Studies in Autosomal Dominant Retinitis Pigmentosa (adRP) of the French Canadian Founder Population. Investigative Opthalmology & Visual Science. 2015;56(13):8297.
40.
Benaglio P, San Jose PF, Avila-Fernandez A. Mutational screening of splicing factor genes in cases with autosomal dominant retinitis pigmentosa. Mol Vis. 2014;20:843–51.
41.
M TF, LF UD. Genética de la Retinitis pigmentosa. 2003;
42.
Palma MM da, Martin D, Salles MV, Motta FLT, Abujamra S, Sallum JMF. Retinal dystrophies and variants in PRPH2. Arquivos Brasileiros de Oftalmologia. 2019;82(2).
43.
Orphanet. The portal for rare diseases and orphan drugs. 2021;
44.
McGuigan D, Heon E, Cideciyan A, Ratnapriya R, Lu M, Sumaroka A, et al. EYS Mutations Causing Autosomal Recessive Retinitis Pigmentosa: Changes of Retinal Structure and Function with Disease Progression. Genes. 8(7):178.
45.
Venturini G, Koskiniemi-Kuendig H, Harper S, Berson EL, Rivolta C. Two specific mutations are prevalent causes of recessive retinitis pigmentosa in North American patients of Jewish ancestry. Genetics in Medicine. 2015;17(4):285–90.
46.
Guzmán HO, Palacios AM, De Almada MI, Utrera RA. A novel homozygous MYO7A mutation involved in a Venezuelan population with high frequency of USHER1B. Ophthalmic Genetics. 2016;37(3):328–30.
47.
Sullivan LS, Bowne SJ, Koboldt DC, Cadena EL, Heckenlively JR, Branham KE, et al. A Novel Dominant Mutation in SAG, the Arrestin-1 Gene, Is a Common Cause of Retinitis Pigmentosa in Hispanic Families in the Southwestern United States. Investigative Opthalmology & Visual Science. 2017;58(5):2774.
48.
Santana EE, Fuster-García C, Aller E, Jaijo T, García-Bohórquez B, García-García G, et al. Genetic Screening of the Usher Syndrome in Cuba. Frontiers in Genetics. 10.
49.
Mullins RF, Kuehn MH, Radu RA, Enriquez GS, East JS, Schindler EI, et al. Autosomal Recessive Retinitis Pigmentosa Due ToABCA4Mutations: Clinical, Pathologic, and Molecular Characterization. Investigative Opthalmology & Visual Science. 2012;53(4):1883.
50.
Ladino LY, Galvis J, Yasnó D, Ramírez A, Beltrán OI. Variante patogénica homocigótica del gen BBS10 en un paciente con síndrome de Bardet-Biedl. Biomédica. 38(3):308–20.
51.
López G, Gelvez N, Urrego LF, Florez S, Rodríguez V, Tamayo ML, et al. Análisis Molecular de las Mutaciones 2299delG y C759F en Individuos Colombianos con Retinitis Pigmentosa e Hipoacusia Neurosensorial. Nova. 12(22):131–41.
52.
Seyedahmadi BJ, Rivolta C, Keene JA, Berson EL, Dryja TP. Comprehensive screening of the USH2A gene in Usher syndrome type II and non-syndromic recessive retinitis pigmentosa. Experimental Eye Research. 2004;79(2):167–73.
53.
Esperón-Álvarez A, Rosado-Ruíz-Apodaca I, Santana-Hernández E. Análisis genético molecular de las mutaciones c . 2299delG y c . 2276C > G en el gen USH2A en pacientes Cubanos con síndrome Usher tipo 2.Rev Cubana Genet Comunit 2017;11(1):14-19.
54.
Breuer DK, Yashar BM, Filippova E, Hiriyanna S, Lyons RH, Mears AJ, et al. A Comprehensive Mutation Analysis of RP2 and RPGR in a North American Cohort of Families with X-Linked Retinitis Pigmentosa. The American Journal of Human Genetics. 2002;70(6):1545–54.
55.
Churchill JD, Bowne SJ, Sullivan LS, Lewis RA, Wheaton DK, Birch DG, et al. Mutations in the X-Linked Retinitis Pigmentosa GenesRPGRandRP2Found in 8.5% of Families with a Provisional Diagnosis of Autosomal Dominant Retinitis Pigmentosa. Investigative Opthalmology & Visual Science. 2013;54(2):1411.
56.
Webb TR, Parfitt DA, Gardner JC, Martinez A, Bevilacqua D, Davidson AE, et al. Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X-linked retinitis pigmentosa (RP23). Human Molecular Genetics. 2012;21(16):3647–54.

Citation

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.