×
Home Current Archive Editorial board
News Contact
Research paper

Vascularization, proliferative activity and the p53 status in glioblastomas

By
Desanka Tasić ,
Desanka Tasić

University of Nis , Niš , Serbia

Irena Dimov ,
Irena Dimov

University of Nis , Niš , Serbia

Miloš Kostov ,
Miloš Kostov

University of Nis , Niš , Serbia

Dragan Dimov
Dragan Dimov

University of Nis , Niš , Serbia

Abstract

Glioblastomas (GBMs) are among the most vascularized human tumors and the presence of microvascular proliferation is one of the diagnostic hallmarks of these malignancies. The aim of the present study was to investigate the extent of vascularization and its relation to proliferative activity and the p53 status in GBMs. Tissue samples from 100 selected primary GBMs were analyzed by immunohistochemistry for the expression of CD34 in vascular endothelial cells and Ki-67 antigen (using the MIB-1 antibody) and p53 in tumor cells. The microvessel density (MVD), a measure of the extent of tumor vascularization, was evaluated in CD34-immunostained sections in three hot spots and presented as the mean for each tumor specimen. We found that the high MVD was more frequent in tumors showing the high MIB-1-labeling index (MIB-1 LI) as compared to those with the low MIB-1 LI, but the difference was not statistically significant. Also, the extent of vascularization did not differ significantly between p53-negative and p53-positive tumors. Both the level of MVD and the proportion of GBMs with low versus high MVD did not differ significantly in relation to the expression levels of p53 (low vs. high or overexpression). No association was found between MVD and tumor cell MIB-1 LI and the p53 status in primary GBMs. These data suggest that the effect of p53 on primary GBM vascularization failed to detect possibly due to the influence of certain factors, including the presence of other or additional molecular alterations in the tumor cells and the hypoxic microenvironment of tumors. They also support the hypothesis that the effect of p53 on angiogenesis may be tumor-type specific.

References

1.
Kawasoe T, Takeshima H, Yamashita S, Mizuguchi S, Fukushima T, Yokogami K, et al. Detection of p53 mutations in proliferating vascular cells in glioblastoma multiforme. Journal of Neurosurgery. 2015;122(2):317–23.
2.
Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes & Development. 2007;21(21):2683–710.
3.
Sharma S, Sharma MC, Gupta DK, Sarkar C. Angiogenic patterns and their quantitation in high grade astrocytic tumors. Journal of Neuro-Oncology. 2006;79(1):19–30.
4.
Zhang J feng, Chen Y, Qiu X xin, Tang W long, Zhang J dong, Huang J huang, et al. The vascular delta-like ligand-4 (DLL4)-Notch4 signaling correlates with angiogenesis in primary glioblastoma: an immunohistochemical study. Tumor Biology. 2016;37(3):3797–805.
5.
Kiesel B, Mischkulnig M, Woehrer A, Martinez-Moreno M, Millesi M, Mallouhi A, et al. Systematic histopathological analysis of different 5-aminolevulinic acid–induced fluorescence levels in newly diagnosed glioblastomas. Journal of Neurosurgery. 2018;129(2):341–53.
6.
Heesters MAAM, Koudstaal J, Go KG, Molenaar WM. Analysis of Proliferation and Apoptosis in Brain Gliomas: Prognostic and Clinical Value. Journal of Neuro-Oncology. 1999;44(3):255–66.
7.
Preusser M, Gelpi E, Matej R, Marosi C, Dieckmann K, Rössler K, et al. No prognostic impact of survivin expression in glioblastoma. Acta Neuropathologica. 2005;109(5):534–8.
8.
Moskowitz SI, Jin T, Prayson RA. Role of MIB1 in Predicting Survival in Patients with Glioblastomas. Journal of Neuro-Oncology. 2006;76(2):193–200.
9.
Johannessen AL, Torp SH. The clinical value of Ki-67/MIB-1 labeling index in human astrocytomas. Pathology & Oncology Research. 2006;12(3):143–7.
10.
Wesseling P, van der Laak JAWM, Link M, Teepen HLJM, Ruiter DJ. Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Human Pathology. 1998;29(4):352–8.
11.
England B, Huang T, Karsy M. Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumor Biology. 2013;34(4):2063–74.
12.
Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, et al. Genetic Pathways to Glioblastoma. Cancer Research. 2004;64(19):6892–9.
13.
Wang X, Chen J xiu, Liu J ping, You C, Liu Y hui, Mao Q. Gain of Function of Mutant TP53 in Glioblastoma: Prognosis and Response to Temozolomide. Annals of Surgical Oncology. 2014;21(4):1337–44.
14.
Zhang Y, Dube C, Gibert M, Cruickshanks N, Wang B, Coughlan M, et al. The p53 Pathway in Glioblastoma. Cancers. 10(9):297.
15.
Berger B, Capper D, Lemke D, Pfenning PN, Platten M, Weller M, et al. Defective p53 antiangiogenic signaling in glioblastoma. Neuro-Oncology. 2010;12(9):894–907.
16.
Gaiser T, Becker MR, Meyer J, Habel A, Siegelin MD. p53-mediated inhibition of angiogenesis in diffuse low-grade astrocytomas. Neurochemistry International. 2009;54(7):458–63.
17.
Birlik B, Canda S, Ozer E. Tumour vascularity is of prognostic significance in adult, but not paediatric astrocytomas. Neuropathology and Applied Neurobiology. 2006;32(5):532–8.
18.
Zhen H, Zhang X, Hu P, Yang T, Fei Z, Zhang J, et al. Survivin expression and its relation with proliferation, apoptosis, and angiogenesis in brain gliomas. Cancer. 2005;104(12):2775–83.
19.
Korkolopoulou P, Patsouris E, Kavantzas N, Konstantinidou AE, Christodoulou P, Thomas‐Tsagli E, et al. Prognostic implications of microvessel morphometry in diffuse astrocytic neoplasms. Neuropathology and Applied Neurobiology. 2002;28(1):57–66.
20.
Preusser M, Heinzl H, Gelpi E, Schonegger K, Haberler C, Birner P, et al. Histopathologic assessment of hot‐spot microvessel density and vascular patterns in glioblastoma: Poor observer agreement limits clinical utility as prognostic factors. Cancer. 2006;107(1):162–70.
21.
Liu X mei, Zhang Q ping, Mu Y gao, Zhang X hen, Sai K, Pang JCS, et al. Clinical significance of vasculogenic mimicry in human gliomas. Journal of Neuro-Oncology. 2011;105(2):173–9.
22.
Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS. Effect of            p53            Status on Tumor Response to Antiangiogenic Therapy. Science. 2002;295(5559):1526–8.
23.
Lu-Emerson C, Duda DG, Emblem KE, Taylor JW, Gerstner ER, Loeffler JS, et al. Lessons From Anti–Vascular Endothelial Growth Factor and Anti–Vascular Endothelial Growth Factor Receptor Trials in Patients With Glioblastoma. Journal of Clinical Oncology. 2015;33(10):1197–213.
24.
Scully S, Francescone R, Faibish M, Bentley B, Taylor SL, Oh D, et al. Transdifferentiation of Glioblastoma Stem-Like Cells into Mural Cells Drives Vasculogenic Mimicry in Glioblastomas. The Journal of Neuroscience. 2012;32(37):12950–60.
25.
Alexander BM, Cloughesy TF. Adult Glioblastoma. Journal of Clinical Oncology. 2017;35(21):2402–9.
26.
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The Lancet Oncology. 2009;10(5):459–66.
27.
Machein MR, Plate KH. Role of VEGF in Developmental Angiogenesis and in Tumor Angiogenesis in the Brain. Cancer Treatment and Research. 2004. p. 191–218.
28.
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica. 2007;114(5):547–547.
29.
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.
30.
Fischer I, Gagner J, Law M, Newcomb EW, Zagzag D. Angiogenesis in Gliomas: Biology and Molecular Pathophysiology. Brain Pathology. 2005;15(4):297–310.
31.
Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, et al. HIF1α Induces the Recruitment of Bone Marrow-Derived Vascular Modulatory Cells to Regulate Tumor Angiogenesis and Invasion. Cancer Cell. 2008;13(3):206–20.
32.
Rafat N, Beck GCh, Schulte J, Tuettenberg J, Vajkoczy P. Circulating endothelial progenitor cells in malignant gliomas. Journal of Neurosurgery. 2010;112(1):43–9.
33.
Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468(7325):824–8.
34.
Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010;468(7325):829–33.
35.
Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, et al. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-Oncology. 2017;19(suppl_5):v1–88.
36.
Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nature Reviews Neuroscience. 2007;8(8):610–22.
37.
Brat DJ, Van Meir EG. Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Laboratory Investigation. 2004;84(4):397–405.
38.
Vousden KH, Lane DP. p53 in health and disease. Nature Reviews Molecular Cell Biology. 2007;8(4):275–83.
39.
Teodoro JG, Evans SK, Green MR. Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. Journal of Molecular Medicine. 2007;85(11):1175–86.
40.
Ohgaki H, Kleihues P. Genetic Pathways to Primary and Secondary Glioblastoma. The American Journal of Pathology. 2007;170(5):1445–53.
41.
Watanabe K, Tachibana O, Sato K, Yonekawa Y, Kleihues P, Ohgaki H. Overexpression of the EGF Receptor and p53 Mutations are Mutually Exclusive in the Evolution of Primary and Secondary Glioblastomas. Brain Pathology. 1996;6(3):217–23.
42.
Korshunov A, Golanov A, Sycheva R. Immunohistochemical Markers for Prognosis of Cerebral Glioblastomas. Journal of Neuro-Oncology. 2002;58(3):217–36.
43.
Birner P, Piribauer M, Fischer I, Gatterbauer B, Marosi C, Ambros PF, et al. Vascular Patterns in Glioblastoma Influence Clinical Outcome and Associate with Variable Expression of Angiogenic Proteins: Evidence for Distinct Angiogenic Subtypes. Brain Pathology. 2003;13(2):133–43.
44.
Leon SP, Folkerth RD, Black PMcL. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer. 1996;77(2):362–72.
45.
Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT                    Gene Silencing and Benefit from Temozolomide in Glioblastoma. New England Journal of Medicine. 2005;352(10):997–1003.

Citation

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.