×
Home Current Archive Editorial board
News Contact
Research paper

Cipargamin could inhibit human adenosine receptor A3 with higher binding affinity than Plasmodium falciparum P-type ATPase 4: An In silico study

By
Toluwase Fatoki ,
Toluwase Fatoki
Oladoja Awofisayo ,
Oladoja Awofisayo
Bolanle Faleye
Bolanle Faleye

Abstract

Aim: This study aimed to predict the molecular targets of cipargamin in humans and estimate the structural dynamics and binding affinity of their interactions compared to that of Plasmodium falciparum P-type ATPase 4 (PfATP4). Methods: In silico methods were used in this study which include target prediction, structure modeling and dynamics, and molecular docking. Results: The results showed that cipargamin had 100% probability of binding to the human adenosine A3 receptor (ADORA3) and about 15% for other human targets which include tyrosine-protein kinase JAK2, adenosine A2a receptor, phosphodiesterase 5A and cathepsin K. The results of molecular docking showed that binding energy of cipargamin to PfATP4 and hADORA3 were-12.40 kcal/mol-1 and-13.40 kcal/mol-1 respectively. The docking was validated by the binding of enprofylline and fostamatinib to PfATP4 and hADORA3. Overall, the binding of cipargamin was closely similar to that of fostamatinib. This study shows the potential of cipargamin to modulate the activities of PfATP4 of the parasite (P. falciparum) as well as ADORA3 of the host (Homo sapiens). Conclusion: All the previous studies of cirpagamin have not implicated its action on hADORA3, thus this study provides an insight into a possible role of hADORA3 in the mechanism of malarial infection.

References

1.
Bar-Yehuda S, Silverman MH, Kerns WD, Ochaion A, Cohen S, Fishman P. The anti-inflammatory effect of A3adenosine receptor agonists: a novel targeted therapy for rheumatoid arthritis. Expert Opinion on Investigational Drugs. 2007;16(10):1601–13.
2.
Staines HM, Ellory JC, Kirk K. Perturbation of the pump-leak balance for Na+ and K+ in malaria-infected erythrocytes. American Journal of Physiology-Cell Physiology. 2001;280(6):C1576–87.
3.
Martin RE, Ginsburg H, Kirk K. Membrane transport proteins of the malaria parasite. Molecular Microbiology. 2009;74(3):519–28.
4.
Martin RE, Henry RI, Abbey JL, Clements JD, Kirk K. The “permeome” of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum. Genome Biology. 6(3).
5.
Ciancetta A, Rubio P, Lieberman DI, Jacobson KA. A3 adenosine receptor activation mechanisms: molecular dynamics analysis of inactive, active, and fully active states. Journal of Computer-Aided Molecular Design. 2019;33(11):983–96.
6.
Linden J. Cloned adenosine A3 receptors: Pharmacological properties, species differences and receptor functions. Trends in Pharmacological Sciences. 1994;15(8):298–306.
7.
Lopes LV, Rebola N, Pinheiro PC, Richardson PJ, Oliveira CR, Cunha RA. Adenosine A3 receptors are located in neurons of the rat hippocampus. NeuroReport. 2003;14(12):1645–8.
8.
Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S, Aghazadeh Tabrizi M, et al. A3Adenosine Receptors as Modulators of Inflammation: From Medicinal Chemistry to Therapy. Medicinal Research Reviews. 2018;38(4):1031–72.
9.
Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA. Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discovery Today. 2012;17(7–8):359–66.
10.
White NJ, Pukrittayakamee S, Phyo AP, Rueangweerayut R, Nosten F, Jittamala P, et al. Spiroindolone KAE609 for Falciparum and Vivax Malaria. New England Journal of Medicine. 2014;371(5):403–10.
11.
Gao ZG, Chen A, Barak D, Kim SK, Müller CE, Jacobson KA. Identification by Site-directed Mutagenesis of Residues Involved in Ligand Recognition and Activation of the Human A3 Adenosine Receptor. Journal of Biological Chemistry. 2002;277(21):19056–63.
12.
Stoddart LA, Kellam B, Briddon SJ, Hill SJ. Effect of a toggle switch mutation in <scp>TM</scp>6 of the human adenosine <scp>A</scp>3 receptor on <scp>G</scp>i protein‐dependent signalling and <scp>G</scp>i‐independent receptor internalization. British Journal of Pharmacology. 2014;171(16):3827–44.
13.
Dyer M, Jackson M, McWhinney C, Zhao G, Mikkelsen R. Analysis of a cation-transporting ATPase of Plasmodium falciparum. Molecular and Biochemical Parasitology. 1996;78(1–2):1–12.
14.
Linden J, Thai T, Figler H, Jin X, Robeva AS. Characterization of human A(2B) adenosine receptors: radioligand binding, western blotting, and coupling to G(q) in human embryonic kidney 293 cells and HMC-1 mast cells. Mol Pharmacol. 1999;56(4):705–13.
15.
Stella L, de Novellis V, Marabese I, Berrino L, Maione S, Filippelli A, et al. The role of A3 adenosine receptors in central regulation of arterial blood pressure. British Journal of Pharmacology. 1998;125(3):437–40.
16.
Ito K, Lim S, Caramori G, Cosio B, Chung KF, Adcock IM, et al. A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression. Proceedings of the National Academy of Sciences. 2002;99(13):8921–6.
17.
Rolf MG, Curwen JO, Veldman‐Jones M, Eberlein C, Wang J, Harmer A, et al. In vitro pharmacological profiling of R406 identifies molecular targets underlying the clinical effects of fostamatinib. Pharmacology Research &amp; Perspectives. 2015;3(5).
18.
Braselmann S, Taylor V, Zhao H, Wang S, Sylvain C, Baluom M, et al. R406, an Orally Available Spleen Tyrosine Kinase Inhibitor Blocks Fc Receptor Signaling and Reduces Immune Complex-Mediated Inflammation. The Journal of Pharmacology and Experimental Therapeutics. 2006;319(3):998–1008.
19.
Lew VL, Tiffert T, Ginsburg H. Excess hemoglobin digestion and the osmotic stability ofPlasmodium falciparum–infected red blood cells. Blood. 2003;101(10):4189–94.
20.
Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H. Oxidative stress in malaria parasite-infected erythrocytes: host–parasite interactions. International Journal for Parasitology. 2004;34(2):163–89.
21.
Akompong T, Kadekoppala M, Harrison T, Oksman A, Goldberg DE, Fujioka H, et al. trans Expression of a Plasmodium falciparum Histidine-rich Protein II (HRPII) Reveals Sorting of Soluble Proteins in the Periphery of the Host Erythrocyte and Disrupts Transport to the Malarial Food Vacuole. Journal of Biological Chemistry. 2002;277(32):28923–33.
22.
Langsley G, Ramdani G. ATP, an extracellular signaling molecule in red blood cells: A messenger for malaria? Biomedical Journal. 2014;37(5):284.
23.
Jiménez-Díaz MB, Ebert D, Salinas Y, Pradhan A, Lehane AM, Myrand-Lapierre ME, et al. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of            Plasmodium. Proceedings of the National Academy of Sciences. 2014;111(50).
24.
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research. 2018;46(W1):W296–303.
25.
Leong FJ, Li R, Jain JP, Lefèvre G, Magnusson B, Diagana TT, et al. A First-in-Human Randomized, Double-Blind, Placebo-Controlled, Single- and Multiple-Ascending Oral Dose Study of Novel Antimalarial Spiroindolone KAE609 (Cipargamin) To Assess Its Safety, Tolerability, and Pharmacokinetics in Healthy Adult Volunteers. Antimicrobial Agents and Chemotherapy. 2014;58(10):6209–14.
26.
Goldgof GM, Durrant JD, Ottilie S, Vigil E, Allen KE, Gunawan F, et al. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor. Scientific Reports. 6(1).
27.
van Pelt-Koops JC, Pett HE, Graumans W, van der Vegte-Bolmer M, van Gemert GJ, Rottmann M, et al. The Spiroindolone Drug Candidate NITD609 Potently Inhibits Gametocytogenesis and Blocks Plasmodium falciparum Transmission to Anopheles Mosquito Vector. Antimicrobial Agents and Chemotherapy. 2012;56(7):3544–8.
28.
Spillman NJ, Allen RJW, McNamara CW, Yeung BKS, Winzeler EA, Diagana TT, et al. Na+ Regulation in the Malaria Parasite Plasmodium falciparum Involves the Cation ATPase PfATP4 and Is a Target of the Spiroindolone Antimalarials. Cell Host &amp; Microbe. 2013;13(2):227–37.
29.
Wentzinger L, Bopp S, Tenor H, Klar J, Brun R, Beck HP, et al. Cyclic nucleotide-specific phosphodiesterases of Plasmodium falciparum: PfPDEα, a non-essential cGMP-specific PDE that is an integral membrane protein. International Journal for Parasitology. 2008;38(14):1625–37.
30.
Howard BL, Harvey KL, Stewart RJ, Azevedo MF, Crabb BS, Jennings IG, et al. Identification of Potent Phosphodiesterase Inhibitors that Demonstrate Cyclic Nucleotide-Dependent Functions in Apicomplexan Parasites. ACS Chemical Biology. 2015;10(4):1145–54.
31.
Gilson PR, Kumarasingha R, Thompson J, Zhang X, Penington JS, Kalhor R, et al. A 4-cyano-3-methylisoquinoline inhibitor of Plasmodium falciparum growth targets the sodium efflux pump PfATP4. Scientific Reports. 9(1).
32.
Vaidya AB, Morrisey JM, Zhang Z, Das S, Daly TM, Otto TD, et al. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum. Nature Communications. 5(1).
33.
Dvorin JD, Martyn DC, Patel SD, Grimley JS, Collins CR, Hopp CS, et al. A Plant-Like Kinase in                    Plasmodium falciparum                    Regulates Parasite Egress from Erythrocytes. Science. 2010;328(5980):910–2.
34.
Spillman NJ, Kirk K. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs. International Journal for Parasitology: Drugs and Drug Resistance. 2015;5(3):149–62.
35.
Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Research. 2014;42(W1):W32–8.
36.
Rottmann M, McNamara C, Yeung BKS, Lee MCS, Zou B, Russell B, et al. Spiroindolones, a Potent Compound Class for the Treatment of Malaria. Science. 2010;329(5996):1175–80.
37.
Sitsel A, De Raeymaecker J, Drachmann ND, Derua R, Smaardijk S, Andersen JL, et al. Structures of the heart specific            <scp>SERCA</scp>            2a Ca            2+            ‐            <scp>ATP</scp>            ase. The EMBO Journal. 2019;38(5).
38.
Glukhova A, Thal DM, Nguyen AT, Vecchio EA, Jörg M, Scammells PJ, et al. Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype Selectivity. Cell. 2017;168(5):867-877.e13.
39.
Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Computational Biology. 13(7):e1005659.
40.
Kuriata A, Gierut AM, Oleniecki T, Ciemny MP, Kolinski A, Kurcinski M, et al. CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucleic Acids Research. 2018;46(W1):W338–43.
41.
Sánchez-Linares I, Pérez-Sánchez H, Cecilia JM, García JM. High-Throughput parallel blind Virtual Screening using BINDSURF. BMC Bioinformatics. 2012;13(S14).
42.
Rego N, Koes D. 3Dmol.js: molecular visualization with WebGL. Bioinformatics. 2015;31(8):1322–4.
43.
Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Research. 2015;43(W1):W443–7.
44.
Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics. 2020;36(6):1765–71.
45.
Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2011;27(3):343–50.
46.
Fatoki TH, Ibraheem O, Ogunyemi IO, Akinmoladun AC, Ugboko HU, Adeseko CJ, et al. Network analysis, sequence and structure dynamics of key proteins of coronavirus and human host, and molecular docking of selected phytochemicals of nine medicinal plants. Journal of Biomolecular Structure and Dynamics. 2021;39(16):6195–217.

Citation

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.